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A 3D printed custom-made mask model for frameless neuronavigation during retrosigmoid craniotomy.
A preclinical cadaveric feasibility study

BACKGROUND: A 3D printing custom-made mask model was tested in terms of feasibility and accuracy for frameless
neuronavigation during retrosigmoid approach.

METHODS: A virtual 3D model of a cadaveric injected head was obtained from a high-resolution Computed Tomography
(CT) scan and 3D Printed (3DP). The course of the transverse and sigmoid sinus was marked. A transparent custom-
made 3DP mask model was created as a cast of 3D model. The area of the lateral sinuses was grooved to allow the
surgeon to use the mask as a template to draw the course of the sinuses on the patient skull. A right retrosigmoid
approach was performed on formalin-fixed injected cadaveric head. Inion and other conventional landmarks were used
to mark the course of the sinuses. 3DP mask was used to re-mark the course of the sinuses. The mismatch between the
landmarks-based and 3DP mask-based track was assumed as a measure of the accuracy of the 3DP mask model.
ResuLTs: 3DP mask model resulted precise, feasible, easy and fast to use. A perfect interlocking with the retrosigmoid
area was noted. Mismatch between the landmarks-based and 3DP mask-based track was of 4 and 6 mm for transverse
and sigmoid sinus, respectively.

CONCLUSION: 3DP custom-made mask model is feasible, easily reproducible and reliable for the implementation of a frame-
less neuronavigation during retrosigmoid approach. Its accuracy is greater than that of the bone landmark neuronavigation.
In selected cases, 3DP mask can be a valid option to image-guided optical or electromagnetic tracking systems.

Key worps: 3D Printing, Neuronavigation, Retrosigmoid Approach, Sigmoid Sinus, Transverse Sinus.

Introduction

The applications of three-dimensional printing (3DP)
technology in medical field are numerous, and the use-
fulness of this know-how has been widely recognized for
educational and surgical aims 7.
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Concerning the educational purposes, the implementa-
tion of 3DP models has proved to facilitate the under-
standing of the three-dimensional anatomy of highly
complex districts, especially the skull base 235, A second
significant area of application is the surgical planning
and simulation ®%. Concerning the skull base corridors,
the retrosigmoid approach encompasses a careful preop-
erative planning and a precise execution in the light of
the risk of injury of the major posterior fossa dural sinus-
es. 'The main goal of the retrosigmoid craniotomy is to
provide a surgical route which should be as much as
possible close to the transverse and sigmoid sinus, prac-
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tically limiting the need for brain retraction °. Bone
landmarks-based navigation and image-guided optical
and electromagnetic tracking systems are both widely
employed in several skull base approaches, being more-
over the retrosigmoid approach among those access cor-
ridors for which neuronavigation adds substantial advan-
tages. In particular, neuronavigation has been reported
to significantly aid the intraoperative localization of the
junction between the transverse and sigmoid sinus .10-1¢
Nevertheless, the precision of the bony landmarks and
the availability of the aforementioned tracking systems
has been reported to be limited and, also, not free from
errors in cranial and even spinal procedures !7?7. The
accuracy of the optical and electromagnetic systems can
be dramatically reduced by mistakes during initial land-
marks registration, accidental displacement of the patient
head, stretching of the surgical drapes, or also position-
ing of skin retractors distorting the soft tissues 25.

In this pre-clinical cadaveric study, a 3D printed cus-
tom-made mask model for frameless neuronavigation
during retrosigmoid approach is tested in terms of fea-
sibility, but also accuracy.

The technical specifics, advantages and limitations of this
model are discussed in detail.

Methods
CONSTRUCTION OF THE PATIENT 3DP MODEL

An injected cadaveric head underwent to a high-resolu-
tion computed tomography scan (Aquilion One,
Toshiba, Tokyo, Japan) (slice thickness 0.5 mm). CT

scan images were processed by means of a semi-auto-

matic segmentation method with a free available soft-
ware  (http://www.itksnap.org/pmwiki/pmwiki.php) in
order to obtain a virtual 3D model of the skull and
neurovascular structures. The virtual model underwent to
a further post-processing consisting in contouring the
sigmoid and transverse sinus, and tracing both of them
on the outer surface of the temporal bone. The model
was then printed with a professional 3D printer (ProJet®
460Plus, 3D Systems, Rock Hill, South Carolina, USA),
using a binder jetting technology (Fig. 1). This printer
had a layer thickness of 100 pm, and employed a chalk-
like powder cured with a water-based adhesive, along
with ink-jet colors.

ConstrUCTION OF THE 3pP CUSTOM-MADE MASK
MobprL

Basing on the 3DP model, a solid mask was then
obtained. The outer bony profile of the 3DP model was
outlined and extruded of 1 mm, thus obtaining a cus-
tom-made mask. The course of the sigmoid and trans-
verse sinus was traced also on the mask. The area cor-
responding to the sinuses course was removed to create
a groove which surgeon can use as a template to draw
the course of the sinuses directly on the patient skull.
Form2 3D printer (Formlabs, Somerville, Massachusetts,
USA) was used to print the mask model by means of
a Vat photopolymerization technology, setting a layer
thickness of 50 pm. The custom-made mask model was
realized with a transparent commercial photopolymer
(Accura ClearVue, Formlabs, Somerville, Massachusetts,
USA) to preserve the visibility of the underlying anatom-
ical structures (Fig. 2).

Fig. 1-2: 3DP cadaveric head model and custom-made mask.
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IMPLEMENTATION OF THE 3DP MASK IN THE SURGICAI
SCENARIO AND ACCURACY CHECK

A formalin-fixed injected head was used for this step. A
retrosigmoid approach was performed on the right side.
Anatomical landmarks relevant for the retrosigmoid
approach were identified on the skin. They were the
inion, mastoid tip and posterior root of the zygomatic
arc. A line connecting the inion and the posterior root
of the zygoma was drawn (Frankfurt plane). In between
the middle and lateral two thirds of this line, the aste-
rion was signed. The projection of the sigmoid and trans-
verse sinus was marked on the skin cranial surface using
these landmarks (Fig. 3). An italic “S” skin incision was
performed, along with a subperiosteal skeletonization of
the posterolateral skull base. Lambdoid, occipito-mastoid,
parieto-mastoid sutures, and the meeting-point between
all of them, namely the asterion, were identified on the

Fig. 3: Superficial landmarks for retrosigmoid approach. Projection
of the sigmoid and transverse sinus marked on the skin.

Fig. 4: Retrosigmoid area after the skeletonization. Lambdoid, occi-
pito-mastoid, parieto-mastoid sutures and asterion are marked.
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bony surface (Fig. 4). Here, the transverse and sigmoid
sinus were marked again on the basis of the bony land-
marks. Asterion was assumed as the classic landmark for
the identification of the junction point between the
transverse and sigmoid sinus. The course of the sinuses
was marked with a dermographic pencil. 3DP mask
model was then fit on the bone in a way such as to
allow zero degrees of freedom in a counterclockwise rota-
tion (Fig. 5). The course of the transverse and sigmoid
sinuses was re-marked through the groove of the mask
(Fig. 6). The mismatch between the landmarks-based line
and the 3DP mask-based line was assumed as a mea-
sure of the accuracy of the 3DP mask model. Taking
into account their different course, the distance between
the two lines was measured vertically and horizontally at
the midportion of the transverse and sigmoid sinus,
respectively. These measures were referred as transverse
sinus mismatch distance (TSMD) and sigmoid sinus mis-

Fig. 5: 3DP mask model placed fit on the retrosigmoid area.

Fig. 6: Transverse and sigmoid sinuses marked through the groove
of the mask.
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Fig. 7: Mismatch in the identification of the lateral sinuses between
bone landmark and 3DP mask navigation. TSMD: transverse sinus
mismatch distance; SSMD: sigmoid sinus mismatch distance.

Fig. 8: Exposure of the junction between the transverse and sigmoid
sinus after retrosigmoid craniotomy.

match distance (SSMD) (Fig. 7). The retrosigmoid cran-
iotomy was performed on the basis of the line traced
by means of the 3DP mask model. Craniotomy involved
a single burr hole performed just inferior and medial to
the junction point between the sinuses. The successful
exposure of the junction between the transverse and sig-
moid sinus by means of the burr hole was assumed as
a measure of accuracy (Fig. 8).

Results
FrASIBILITY OF 3DP CUSTOM-MADE MASK MODEL

The 3DP mask model proved to be feasible, easy and
fast to use. After its placement on the bony surface,
no counterclockwise rotation was possible because of the
overhang of the mastoid and the perfect interlocking of
the mask with the retrosigmoid area.

AccUracy oOf 3pp CusTOM-MADE MASK MODEL

The single burr hole provided for a full exposure of the
junction between the transverse and sigmoid sinus.

TSMD and SSMD was 4 and 6 mm, respectively.

Discussion

The retrosigmoid approach is routinely performed by
neurosurgeons and neuro-otologists for the treatment of
several lesions involving the posterolateral skull base, as
it provides a wide exposure of the cerebello-pontine angle
%29 Initial steps of the retrosigmoid craniotomy can be
challenging and risky for inexperienced surgeons.
Retrosigmoid craniotomy has to provide an adequate line
of sight to the surgical target, at the same time mini-
mizing the cerebellar retraction. To do this, the first burr
hole ought to be located near to the junction between
the transverse and sigmoid sinus. The precise intraoper-
ative identification of the venous sinuses is crucial also
to prevent catastrophic sequalae coming from their tears
30, Asterion is classically considered as the most reliable
bone landmark to localize the junction between the
transverse and sigmoid sinus, although recent studies
have questioned its accuracy because of a well-known
anatomical individual variability %3132 Injon, superior
nuchal line and zygomatic root are further bone land-
marks along the Frankfurt horizontal plane, whilst mas-
toid tip and digastric groove are considered as additional
landmarks specifically for the sigmoid sinus. Dogan et
al., suggested to use a line connecting the angle of the
mandible and the mastoid tip to localize the external
projection of the sigmoid sinus ¥. Zhentao proposed to
locate the junction just above a line between the exter-
nal occipital protuberance and the lowest point of the
mastoid process in the coronal and the sagittal planes
on 3D CT scan 3. Although several studies tried to
identify new bone landmarks for retrosigmoid approach,
or also to validate the existing ones, all of these unfor-
tunately suffer from a not negligible lack of accuracy -
26, Moreover, a significant individual, sex- and racial-
related variability has been reported %. That’s the main
reason why, by the reason of its high precision and rel-
atively easy of use, image-guided neuronavigation is
nowadays routinely employed during surgery of tumors
affecting the central nervous system 34, skull base and
posterior fossa °°°, but also aneurysms, arteriovenous
and cavernous malformations ¢4,

In addition, the implementation of minimally invasive
techniques in several surgical areas ©7°, such as endo-
scopic and stereotatic procedures, made the employment
of neuronavigation even more necessary 207177 The
“patient-specificity” of neuronavigation, allows to over-
come the aforementioned rate of anatomical variability
related to the use of the only bone landmarks.
Furthermore, few doubts do exist about the usefulness
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of the navigation in reducing morbidity coming from
potential injuries to vital structures.

Despite all these advantages, conventional image-guided
neuronavigation systems suffer from some technical
weakness. They involve the placement of a skull clamp
which, apart from having risks of complications 78, may
also potentially interfere with the surgical maneuvers dur-
ing specific approaches, thus limiting the surgeon and
the patient comfort. An additional problem is their accu-
racy. In 2013, Stieglitz and colleagues published a ret-
rospective quality-control study aimed to quantify the
decrease of accuracy of neuronavigation during cranial
neurosurgery. They highlighted some pitfalls related to
the loss of precision, mainly coming from the patient
position, modality of initial registration, surgical drap-
ing, placement of skin retractors, along with accidental
movements of the patient head, skull clamp and refer-
ence arc 28, In recent years, 3DP technology has lived
a tremendous and never seen before development in
many medical fields, 3DP models being been trusted as
a valuable tool for engineering of bio-scaffolds, preclin-
ical anatomical education, surgical training, preoperative
planning and also surgical simulation, suitable for many
surgical fields 7989, Particularly precious has been the
employment of the 3DP technology in surgery, because
of its high reliability regarding both the morphology and
the mechanical properties resembling those of the living
tissues. In neurosurgical practice, custom-made models
are commonly employed for the construction of biosyn-
thetic and biocompatible cranial flaps after decompres-
sive craniectomy %°. Furthermore, 3DP models can be
used to design preoperatively some custom-made graft
to be employed in those challenging cases where a large
bony demolition is planned. Just to cite few, they have
been recently used to plan the positioning of semi-
implantable transcutaneous bone-conduction implants,
en bloc resections of primary spine tumors, petroclival
lesions, cranioplasty, or also to preoperatively quantify
the differences in facial symmetry before reconstructive
surgery 27729192 Last but far from least, 3DP technol-
ogy has the great advantage to be based on the patient
own radiological images, being able to be considered
therefore as an image-guided navigation.

The present pre-clinical study allowed to practically assess
the feasibility of the 3DP custom-made mask model in
the execution of the retrosigmoid approach. The mea-
sured TSMD and SSMD allowed to consider the pre-
sent model more accurate in comparison with the bone
landmarks-based navigation. Noteworthy, the implemen-
tation of the mask was fast and user friendly. In the
light of these evidences, 3DP mask model may be con-
sidered a valuable option to conventional image-guided
neuronavigation systems in selected cases.

However, some limitations of this model have to be
mentioned. First, it can be used only in elective cases;
second, the projection of the sigmoid and transverse sinus
must be done taking into account the surgical position,

530 Ann. Ital. Chir., 91, 5, 2020

otherwise, the spatial information would be improper.
In addition, observation on a larger scale are necessary
to definitively confirm our data regarding the accuracy.

Conclusions

The reported 3DP custom-made mask model has proved
to be easily reproducible and reliable for the implemen-
tation of a frameless neuronavigation during retrosigmoid
approach.

The mask allows to estimate the projection of the trans-
verse and sigmoid sinuses on the bony surface with an
accuracy greater than that provided by the use of the
only bone landmarks.

The use of this mask model allows to reduces the poten-
tial risks related to an accidental slippage of the head-
frame and, ultimately, permits to perform a precise and
safe retrosigmoid craniotomy.

3DP custom-made mask model should be considered as
an additional tool for neuro-otologists and neurosur-
geons, to be used in selected cases as a valid option to
image-guided optical or electromagnetic tracking systems.

Riassunto

Un modello di maschera personalizzato realizzato medi-
ante l'utilizzo di stampante 3D ¢ stato testato in termi-
ni di fattibilita e precisione ai fini della neuronavigazione
frameless durante l'esecuzione dell'approccio retrosig-
moideo.

Un modello virtuale ¢ stato ottenuto e stampato in 3D
a partire da una testa di cadavere iniettata, fissata in for-
malina, e sottoposta a tomografia computerizzata ad alta
risoluzione. Il decorso del seno trasverso e sigmoideo ¢
stato disegnato sulla sagoma 3D. Sulla scorta del mod-
ello una maschera 3D custom-made trasparente ¢ stata
successivamente prodotta con una scanalatura in cor-
rispondenza dell’area dei seni laterali per consentire al
chirurgo di tracciare durante I'approccio il decorso dei
seni direttamente sul cranio del paziente. E stato dunque
eseguito un accesso retrosigmoideo destro sulla testa del
cadavere. L’inion e gli altri principali reperi ossei con-
venzionali sono stati usati per delineare il decorso dei
seni venosi durali. Successivamente la maschera 3D ¢ sta-
ta impiegata per ridisegnare il decorso dei seni. La dis-
crepanza tra le due tracce ¢ stata assunta come misura
dell'accuratezza del modello.

Il modello di maschera 3D ¢ risultato preciso, affidabile,
facile e veloce da utilizzare. E stata inoltre documenta-
ta una perfetta corrispondenza con l'area retrosigmoidea.
La differenza tra le due tracce ¢ stata di 4 mm per il
seno trasverso ¢ di 6 mm per quello retrosigmoideo.

Il modello di maschera 3D custom made ¢ risultato fat-
tibile, facilmente riproducibile e affidabile ai fini del-
Iimplementazione della neuronavigazione frameless
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durante 'approccio retrosigmoideo. La sua precisione ¢
stata maggiore di quella della neuronavigazione basata su
reperi ossei. In casi selezionati la maschera 3D pud essere
un'opzione valida rispetto ai sistemi di neuronavigazione
ottica ed elettromagnetica guidati da immagini.
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