A Meta-analysis of the Efficacy of Different Surgical Methods in the Treatment of Uterine Prolapse

Ann. Ital. Chir., 2024 95, 3: 257–274 https://doi.org/10.62713/aic.3385

Hongxiang Chen¹, Xiumei Wei¹, Nuerbiya Kurexi¹, Shuang Yang¹

¹The Gynecology Department, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, 830001 Urumqi, Xinjiang, China

AIM: The management of uterine prolapse poses a significant clinical challenge, with surgical intervention often necessary for symptom relief and restoration of pelvic floor function. However, the optimal surgical approach for uterine prolapse remains uncertain, prompting a comprehensive meta-analysis to compare the efficacy of various surgical methods. This study aims to assess the effectiveness of different surgical methods for treating uterine prolapse.

METHODS: We used computer search to retrieve relevant literature to compare the therapeutic effects of different surgical methods for treating uterine prolapse. The search was conducted in the Web of Science and PubMed databases, and articles published until October 2023 were obtained. We employed random effects and fixed effects models and performed a meta-analysis using the R software.

RESULTS: This study included 40 standard papers covering 25,896 patients with uterine prolapse. We used random and fixed effects models to conduct a meta-analysis of hysterectomy and uterine fixation procedures. The findings indicated that different surgical approaches had no significant impact on surgical success rates ($I^2 = 69\%$, p < 0.01; risk ratio (RR) (95% confidence intervals (CI)): 1.00 [0.98; 1.03]) or postoperative adverse reactions ($I^2 = 54\%$, p < 0.01; RR (95% CI), 1.10 [0.83; 1.45]). However, the durations of the surgical procedure for hysterectomy ($I^2 = 91\%$, p < 0.01; standardized mean difference (SMD) (95% CI), 0.78 [0.49; 1.07]), surgical blood loss ($I^2 = 97\%$, p < 0.01, SMD (95% CI): 1.14 [0.21; 2.07]), and intraoperative adverse reactions ($I^2 = 0\%$, p = 0.61, RR (95% CI): 1.37 [1.10; 1.71]) were statistically significant between hysterectomy and uterine fixation procedures. Additionally, publication bias and sensitivity tests showed no publication bias in this meta-analysis and no literature causing significant sensitivity.

CONCLUSIONS: In the treatment of uterine prolapse, both hysterectomy and uterine fixation are similar in terms of surgical success rates and postoperative adverse reactions. However, hysterectomy is associated with longer duration of the surgical procedure, increased blood loss and higher incidence of intraoperative adverse reactions compared to uterine fixation.

Keywords: surgical methods; uterine prolapse; efficacy; meta-analysis

Introduction

Uterine prolapse (UP) is an anatomical anomaly in the female reproductive system. It is characterized by weakening pelvic floor support structures, leading to descent, sliding, or downward displacement of the uterus and/or cervix, along with adjacent organs such as the bladder and/or rectum [1, 2]. The causes of UP are diverse and include factors such as pregnancy, childbirth, congenital or acquired connective tissue disorders, pelvic nerve weakness or aging, menopause, and factors associated with prolonged elevated intra-abdominal pressure. These factors may involve a history of multiple pregnancies, difficult deliveries, prolonged labor, insufficient postpartum rest, or engagement in heavy physical labor [3]. With the growth of the elderly population, the incidence of UP is increasing. Concurrently, physiological and psychological issues resulting from UP, such as urinary incontinence, sexual intercourse pain, and other symptoms, substantially affect the quality of life of many females. With increases in health awareness, UP has received greater attention [4, 5]. Surgery is one of the main approaches for treating UP. However, there is still no consensus among clinicians regarding the most effective surgical method, requiring further research and evaluation [6].

Meta-analysis is a statistical approach aimed at synthesizing independent findings from related studies [7]. Its primary objective is to amalgamate data from multiple studies, explore heterogeneity, and, when applicable, generate a single effect estimate to summarize the overall effect in the research field. As a widely utilized statistical method, metaanalysis aids in integrating all relevant studies and investigating consistency and divergence among individual studies, thereby yielding statistically analyzed results that are closer to real-world scenarios [8]. Through meta-analysis, researchers can obtain more reliable conclusions, avoiding excessive reliance on individual study outcomes and gaining a better understanding of the overall situation in the relevant field. Meta-analysis has widespread applications in the fields of medicine and the social sciences. In this study, we

Correspondence to: Hongxiang Chen, The Gynecology Department, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, 830001 Urumqi, Xinjiang, China (e-mail: XJZZQRMYY@126.com).

employed a meta-analysis to evaluate the efficacy of surgical interventions for UP, offering healthcare providers and patients more informed treatment options. Thus, we aimed to conduct a meta-analysis of the effectiveness of different surgical approaches for treating UP to provide more accurate treatment recommendations.

Materials and Methods

Literature Retrieval

This study was initiated with computer searches, and PubMed and Web of Science databases were selected. Our search period was extended to October 2023, with the aim of identifying relevant literature published to that date and comparing the effectiveness of different surgical methods in treating UP. In the PubMed search, our search terms were set as: ("pelvic organ prolapse" OR "descensus" OR "vaginal prolapse") AND "hysteropexy"; whereas in the Web of Science search, our search terms were set as: Topic Search (TS) = (("pelvic organ prolapse" OR "descensus" OR "vaginal prolapse") AND "hysteropexy"). This systematic review is reported according to PRISMA 2020 guidelines (**Supplementary Material**).

Reference Inclusion and Exclusion Criteria Inclusion Criteria

The following studies were included: (1) Reasonably designed retrospective studies, prospective studies, or randomized controlled trials, regardless of whether blinding was employed; data from the two groups must be compared; (2) Patients diagnosed as requiring either hysterectomy or uterine fixation; (3) Studies encompassing both hysterectomy and uterine fixation procedures as the intervention measures; and (4) Outcome indicators that included surgical approach, duration, intraoperative blood loss, adverse reactions during surgery, and adverse reactions postsurgery.

Exclusion Criteria

The following studies were excluded: (1) Studies of "Books and Documents", "meta-analysis", "Review", and "Systematic Review"; (2) Studies categorized as summaries and conference papers; (3) Studies lacking pertinent clinical data; and (4) Studies with incongruent outcome indicators.

Literature Screening and Information Extraction

Literature screening was handled by two independent researchers tasked with searching and sifting through the literature, followed by cross-verification. In cases of disagreement, resolution is sought by a third party. For the included studies, we meticulously read and extracted data on account of the research in the literature, encompassing: (1) general information (author, publication date, source of literature); (2) study characteristics (study design, research subjects, basic patient information, intervention measures, statistical methods); and (3) outcome indicators (surgical methods, duration, blood loss, intraoperative complications [massive hemorrhage, rectum or colon injury, bladder injury, blood transfusion, bladder lesions, vaginal injury], and postoperative complications [conversion to open, bladder perforation, cystotomy, ureteral kink, ureteral injury, transfusion or Estimated Blood Loss (EBL) >500 mL]).

Risk of Bias and Quality Assessment

The quality of the included literature was evaluated using the Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I) tool.

Subgroup Analysis

In this meta-analysis, retrospective studies, prospective studies, and randomized controlled trials were included. Subgroup analysis was conducted using the meta package in R to reduce potential sources of bias in retrospective studies, prospective studies, and randomized controlled trials included in this meta-analysis.

Statistical Analysis

Meta-analysis

This meta-analysis was carried out using R software (version 3.6.1, R Foundation for Statistical Computing, Vienna, Austria). We employed the mean difference (MD) to analyze continuous data and the risk ratio (RR) for binary data analysis. All analyses were performed with 95% confidence intervals (CI). Statistical significance was set at $p \le 0.05$; otherwise, the difference was deemed insignificant. Before consolidating the data, we conducted a heterogeneity test on various study data, with RR as the metric. Initially, we utilized a fixed effects model to obtain the meta-analysis I², H2, and Q values. A larger Q value corresponds to a smaller *p* value. If Q > 0.05 and I² < 50%, we used the fixed effects model; if Q < 0.05 and I² > 50%, we opted for the random-effects model.

Model Evaluation and Sensitivity Analysis

The Meta package in R were used to plot funnel and radar plots for model evaluation.

The Meta package in R was used for sensitivity analysis of studies with low and unclear bias risks and observational studies.

Results

Literature Retrieval Results

We conducted searches of PubMed and Web of Science databases, resulting in 500 relevant articles. After applying the exclusion criteria, we narrowed the selection to 40 articles (related to uterine fixation and hysterectomy) [9–48], which were included in the meta-analysis. The detailed steps of literature screening and the fundamental character-

Hongxiang Chen, et al.

Fig. 1. Document inclusion and exclusion flow chart.

istics of the selected articles are presented in Fig. 1 and Table 1 (Ref. [9–48]), respectively.

Risk of Bias

Using the Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I) tool, bias risk assessment was conducted on these 40 studies, revealing 10 studies with low bias risk [14, 17, 19, 23, 26, 30, 40, 41, 45, 47], 26 studies with moderate bias risk [9, 10, 11, 12, 13, 16, 18, 20, 21, 22, 24, 27, 29, 31, 32, 33, 34, 35, 36, 38, 39, 42, 43, 44, 46, 48], and 4 studies with high bias risk [15, 25, 28, 37] (Fig. 2).

Subgroup Analysis

Subgroup analysis was conducted on the 40 studies, revealing 27 retrospective studies [9, 10, 11, 14, 15, 18, 20, 21, 22, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 38, 39, 42, 43, 44, 45, 46, 47], 6 prospective studies [12, 13, 16, 36, 37,

48], and 7 randomized controlled trials [17, 19, 23, 26, 30, 40, 41] (Fig. 3). The heterogeneity among retrospective studies was $I^2 = 73\%$, prospective studies was $I^2 = 19\%$, and randomized controlled trials was $I^2 = 53\%$. The primary source of heterogeneity was found to be retrospective studies.

Meta-analysis Results

Comparison of Different Surgical Methods' Success Rates

Our article referenced 40 studies [9–48], involving surgical data from 25,896 patients. Using a random effects model for analysis (I² = 69%, p < 0.01), the meta-analysis results indicated an RR value of 1.00 [0.98; 1.03] for the success rates between the procedures of retaining and not retaining the uterus. This suggests that the different surgical approaches did not significantly impact the success rates of the surgeries (Fig. 4).

Table 1.	Basic	information	table for	included	literature.

Study	Method hysterectomy	Method hysteropexy	Study design	Years	RR	Outcome
Thys et al. [9],	vaginal hysterectomy	Manchester Fothergill	nRCs	0-1	1.0540541	Shorter operation time and
2011						less blood loss in the MF
Thu at al. $[10]$	anorogninous ligamont	lanaragaania utarina	"PCa	0.1	1 000000	group
2021	fixation	suspension	likes	0-1	1.0000000	vaginal length reduces
2021	inauton	suspension				complications, and im-
						proves outcomes.
Wang <i>et al</i> .	bilateral sacrospinous	bilateral sacrospinous	nRCs	2–3	1.0858961	BSHP procedure yields
[11], 2022	ligament fixation with	hysteropexy				noninferior anatomical
Change of all	vaginal hysterectomy	1	"DC-	0.1	1 0000000	and functional outcomes
$\begin{bmatrix} 12 \\ 2023 \end{bmatrix}$	nysterectomy	nysteropexy	likes	0-1	1.0000000	native-ussue pervic organ
[12], 2023						icantly improves sexual
						function
Gracia et al.	laparoscopically	sacral laparoscopic	nRCs	0-1	1.0000000	The overall success rate
[13], 2015	conducted subtotal	hysteropexy				was significantly higher in
	hysterectomy plus					the laparoscopic subtotal
	cervicopexy					conexy group
Illiano <i>et al</i> .	laparoscopic hysterectomy	laparoscopic hysteropexy	nRCs	0-1	1.0000000	No differences in the
[37], 2020	with sacrocolpopexy					anatomical and functional
						outcomes between LSC
						with or without hysterec-
Van <i>et al</i> [14]	lanarosconic sunracervical	lanarosconic	nRCs	2_3	1 0357244	tomy for POP
2023	hysterectomy with	sacrohysteropexy	littes	2 5	1.0557244	able outcomes in terms of
	concomitant laparoscopic	5 1 5				anatomic correction, qual-
	sacrocervicopexy					ity of life improvement,
	laparoscopic supracervical	laparoscopic	nRCs	2–3	1.0405927	and reduced risk of severe
	hysterectomy with	sacrohysteropexy				complications
	sacrocerviconexy					
Şükür et al.	vaginal hysterectomy with	laparoscopic	nRCs	0-1	0.9685732	In younger patients, VH
[15], 2020	McCall suspension	sacrohysteropexy				& McCall increases the
						risk of symptomatic pro-
						lapse recurrence relative to
Ker et al [16]	transvaginal mesh	transvaginal mesh	nRCs	0_1	1.0312500	LSHP Patients experience longer
2018	hysterectomy	hysteropexy	littes	0 1	1.0512500	vaginal length, shorter
						operation duration, less
						blood loss and less
						post-operation pain with
Nogor of al	ventional hyperparts may with	an an an in and hy at an an arrest	"DC	0.1	0 2001140	hysteropexy.
Nager e_i a_i .	uterosacral ligament	with graft	likes	0-1	0.8901149	with graft resulted in a
[1,], 2021	suspension	n mi Braro				lower composite failure
	vaginal hysterectomy with	sacrospinous hysteropexy	nRCs	1–2	0.8724900	rate than vaginal hystere-
	uterosacral ligament	with graft				ctomy through 5 years.
	suspension	• • •	DC	.	0.040/111	
	vaginal nysterectomy with	sacrospinous hysteropexy with graft	nRCs	2–3	0.8486111	
	suspension	when Stutt				

		Table 1. Con	inued.			
Study	Method hysterectomy	Method hysteropexy	Study design	Years	RR	Outcome
	vaginal hysterectomy with uterosacral ligament suspension	sacrospinous hysteropexy with graft	nRCs	>3	0.7696203	
	vaginal hysterectomy with uterosacral ligament suspension	sacrospinous hysteropexy with graft	nRCs	>3	0.7292308	
Bedford <i>et al.</i> [18], 2013	laparovaginal hysterectomy with uterosacral colpopexy	laparoscopic uterosacral hysteropexy	nRCs	0–1	1.0656977	Hysterectomy with lapa- roscopic uterosacral colpopexy produced better
	laparovaginal hysterectomy with uterosacral colpopexy	laparoscopic uterosacral hysteropexy	nRCs	2–3	1.1452381	objective success rates than did laparoscopic uterosacral hysteropexy
Nager <i>et al.</i> [19], 2019	hysterectomy	hysteropexy	nRCs	1–2	0.8991060	Fewer failures for hys- teropexy compared to hys- terectomy through 5 years
Stanford <i>et al.</i> [20], 2015	baseline previous hysterectomy	no hysterectomy	nRCs	1–2	0.9672131	No difference in overall intraoperative complica-
	concomitant hysterectomy	no hysterectomy	nRCs	1–2	0.9655172	tions. A trend toward increased mesh extrusion when a hysterectomy
Al-Badr <i>et al.</i> [21], 2017	vaginal hysterectomy with utero-sacral suspension	sacro-spinous hysteropexy	nRCs	1–2	2.0307692	SSHP appeared less suc- cess rate and increased risk of recurrent anterior pro- lapse
Romanzi <i>et al.</i> [22], 2012	vaginal hysterectomy	uterosacral hysteropexy	nRCs	1–2	1.0581395	USH women weighed less, were younger, and more constipated with larger rectoceles
Rogers <i>et al.</i> [23], 2022	hysterectomy	hysteropexy	nRCs	2–3	1.1899932	More women in the mesh hysteropexy group achieved the MID than in the hysterectomy group
Campagna <i>et al</i> . [24], 2022	laparoscopic sacral colpopexy with concomitant supracervical hysterectomy	laparoscopic sacral hysteropexy	nRCs	0–1	1.0679513	No significant differ- ences between the groups in terms of subjective success rate, estimated
	laparoscopic sacral colpopexy with concomitant supracervical hysterectomy	laparoscopic sacral hysteropexy	nRCs	1–2	1.0391850	blood loss, conversion to laparotomy and intra- and postoperative com- plications. The median operative time (OT) was significantly shorter in LSHP
Pan <i>et al.</i> [25], 2016	laparoscopic sacrocolpopexy/total laparoscopic hysterectomy	laparoscopic sacral hysteropexy	nRCs	1–2	1.2202753	TLH with LSC approach provides similar anatom- ical results, excellent patient satisfaction, and improved quality of life scores

Table 1. Continued.

	ladie 1. Continued.												
Study	Method hysterectomy	Method hysteropexy	Study design	Years	RR	Outcome							
Izett-Kay <i>et al.</i> [26], 2022	vaginal hysterectomy	laparoscopic mesh sacrohysteropexy	nRCs	>3	0.8940887	Laparoscopic sacrohys- teropexy had a lower risk of apical reoperation, greater apical support and increased total vaginal length.							
Lone <i>et al.</i> [27], 2018	vaginal hysterectomy	laparoscopie sacrohysteropexy	nRCs	1–2	1.2901235	At 2 years, both pro- cedures had similar improvement in symptom domains, overall scores, adverse events, recurrent prolapse, and new-onset SUI							
Haj-Yahya <i>et al.</i> [28], 2020	transvaginal hysterectomy with uterosacral ligament suspension	laparoscopic uterosacral ligament suspension	nRCs	1–2	0.9803922	In both groups, the im- proved POP-Q points Ba, C, and Bp, as well as the clinical cure rate and anatomical cure rate, were not significantly different.							
Lo <i>et al.</i> [29], 2015	sacrospinous ligament fixation with hysterectomy	sacrospinous ligament fixation with hysteropexy	nRCs	>3	1.4333333	Mean age, parity, post- menopausal status and mean operating time in the hysterectomy group were significantly higher than in the hysteropexy group							
Dietz <i>et al.</i> [30], 2010	vaginal hysterectomy	sacrospinous hysteropexy	nRCs	0-1	1.3027295	The sacrospinous hys- teropexy for uterine descent is associated with an earlier recovery time, more recurrent apical prolapses							
Li <i>et al</i> . [31], 2020	laparoscopic supracervical hysterectomy plus cervicopexy	laparoscopic hysteropexy	nRCs	0–1	1.0000000	LHP had a significantly shorter hospital stay and a higher VAS score than LSHCP							
Gagyor <i>et al.</i> [32], 2021	laparoscopic supra-cervical hysterectomy and laparoscopic sacro-cervicopexy or a total laparoscopic hysterectomy and laparoscopic sacro-colpopexy	laparoscopic sacro-hysteropexy	nRCs	0-1	1.0674226	LSH seems to be asso- ciated with higher inci- dence of anterior compart- ment failures and subopti- mal mesh placement based on postoperative imaging techniques							
Yuan <i>et al</i> . [33], 2021	hysterectomy	hysteropexy	nRCs	>3	0.7863248	Hysteropexy is associated with lower odds of expe- riencing AEs, shorter op- erating times, a shorter length of stay, and less blood loss							

Table 1 Continued

Study	Method hysterectomy	Method hysteropexy	Study design	Years	RR	Outcome
Forde et al. [34],	hysterectomy	hysteropexy	nRCs	0–1	1.0017742	Hysterectomy during
2017	hysterectomy	hysteropexy	nRCs	2–3	0.9979597	mesh-based POP surger
	hysterectomy	hysteropexy	nRCs	>3	0.9547557	in patients under 55 yea
						led to more expensive charges and a longer sta
Chughtai et al. [35],	hysterectomy	hysteropexy	nRCs	0-1	1.0161290	Hysterectomy was more
2018	hysterectomy	hysteropexy	nRCs	2–3	1.0000000	expensive and had more
	hysterectomy	hysteropexy	nRCs	>3	1.0300000	surgical complications
						within 90 days of the
						initial procedure
Arcieri et al.	laparoscopic sacral	robotic sacral hysteropexy	nRCs	0-1	1.0769231	No difference was found
[36], 2023	colpopexy with					terms of estimated blo
	supracervical					loss, hospital stay, ope
	hysterectomy					tive time and intraope
	hysterectomy					tive enne, and intraope
D		· 1 /	DC	0 1	1.0520015	plications
van Brummen	vaginal hysterectomy	sacrospinous hysteropexy	nRCs	0-1	1.0529915	Sacrospinous hysterope
et al. [38], 2003						is associated with a fas
						complete recovery.
						Vaginal hysterectomy
						associated with a threef
						higher risk for overact
						bladder and urge inco
						nence symptoms
Carlin <i>et al</i> .	vaginal hysterectomy	vaginal sacrospinous	nRCs	>3	0.9647059	The SSH group showe
[39], 2023		hysteropexy				significantly shorter m
						surgery time, fewer hos
						talization days, and less
						traoperative blood loss
Detollenaere et	vaginal hysterectomy	sacrospinous hysteropexy	nRCs	0-1	0.9619048	At 12 months, ove
al. [40]. 2015						anatomical recurren
						functional outcome. q
						ity of life complication
						hospital stay measures
						nospital stay, measures
						and sexual functioning
						not differ between the
a. 1			D.C.	2		groups.
Schulten <i>et al.</i>	vaginal hysterectomy	sacrospinous hysteropexy	nRCs	>3	0.8651685	Less anatomical rec
[41], 2019						rences and a higher
						success in sacrospin
						hysteropexy
Chou <i>et al.</i> [42],	vaginal hysterectomy with	sacrospinous hysteropexy	nRCs	1–2	0.5689655	Shorter operation time
2021	sacrospinous colpopexy					and lower anatomical
,	vaginal hysterectomy with	sacrospinous hysteropexy	nRCs	1-2	0.6166008	recurrence rates in the
	sacrospinous colpopexy					uterine preservation gro
Plair <i>et al</i> . [43],	hysterectomy with apical	anterior sacrospinous	nRCs	1–2	1.0085164	Anterior sacrospinous h
2021	repair	hysteropexy				teropexy has similar she
						term efficacy compared
						hysterectomy with ap
						repair with shorter one
						tive time and a trend
						wards fewer serious of
						nligations
						plications.

	Table 1. Continued.												
Study	Method hysterectomy	Method hysteropexy	Study design	Years	RR	Outcome							
McDermott <i>et</i> <i>al.</i> [44], 2011	total Prolift hysteropexy	total Prolift colpopexy	nRCs	0–1	0.9502924	TPC and TPH have similar surgical outcomes, except for vaginal vault measure- ments reflected by POP-Q point C							
Husby et al. [45],	vaginal hysterectomy	Manchester-Fothergill	nRCs	0-1	0.9600380	Sacrospinous hysteropexy							
2019	vaginal hysterectomy	sacrospinous hysteropexy	nRCs	0-1	1.1498859	has exceedingly high num- bers of reoperations due to prolapse recurrence							
Mao <i>et al.</i> [46], 2023	laparoscopic uterosacral suspension with concomitant hysterectomy	laparoscopic uterosacral hysteropexy	nRCs	2–3	0.9428571	No difference was found in the risk of overall recur- rence and overall rates of							
	laparoscopic uterosacral suspension with concomitant hysterectomy	laparoscopic uterosacral hysteropexy	nRCs	0–1	0.9285714	recurrent prolapse between the two groups							
	laparoscopic uterosacral suspension with concomitant hysterectomy	laparoscopic uterosacral hysteropexy	nRCs	1–2	0.9375000								
Milani <i>et al.</i> [47], 2020	hysterectomy plus uterosacral ligament suspension	uterosacral hysteropexy	nRCs	2–3	0.9743590	Hysteropexy was associ- ated with shorter operative time and less bleeding and found to be associated with a significantly higher cen- tral recurrence rate							
Bowen <i>et al.</i> [48], 2023	vaginal hysterectomy with uterosacral ligament suspension	vaginal mesh hysteropexy	nRCs	2–3	0.6551724	The hysterectomy group had higher prolapse recur- rence							

Note: nRCs, non-randomized controlled studies; RR, risk ratio; MF, Manchester Fothergill; BSHP, bilateral sacrospinous hysteropexy; LSC, laparoscopic sacrocolpopexy; POP, pelvic organ prolapse; LSCH, laparoscopic supracervical hysterectomy; VH, vaginal hysterectomy; LSHP, laparoscopic sacrohysteropexy; SSHP, sacro-spinous hysteropexy; USH, uterosacral hysteropexy; MID, minimally important difference; TLH, total laparoscopic hysterectomy; VAS, Visual analog scale; LHP, laparoscopic hysteropexy; LSHCP, laparoscopic supracervical hysterectomy plus cervicopexy; LSH, Laparoscopic supracervical hysterectomy; AEs, adverse events; SSH, sacrospinous hysteropexy; TPC, total prolift colpopexy; TPH, total prolift hysteropexy.

Comparison of Different Surgical Procedures' Duration

Of these 40 studies, 19 provided information about the surgical duration [9, 11, 14, 16, 18, 19, 24, 25, 29, 31, 32, 33, 36, 39, 40, 42, 44, 46, 47]. We conducted an analysis using a random effects model ($I^2 = 91\%$, p < 0.01) and found that the standardized mean difference (SMD) (95% CI) value was 0.78 [0.49; 1.07]. The meta-analysis suggested that the surgical duration for the method of not retaining the uterus was significantly longer than that for the process of retaining the uterus (Fig. 5).

Comparison of Different Surgical Methods' Blood Loss

Of these 40 studies, 19 provided detailed information on patient blood loss during surgery [9, 11, 14, 16, 18, 20, 21, 24, 25, 29, 31, 32, 33, 36, 40, 42, 44, 46, 47]. We conducted a random effects model for analysis ($I^2 = 97\%$, p < 0.01), and the results indicated an SMD (95% CI) of 1.14 [0.21; 2.07]. This meta-analysis revealed that the surgical

approach of not retaining the uterus significantly increased the risk of intraoperative blood loss compared to the method of retaining the uterus (Fig. 6).

Comparison of Different Surgical Methods' Intraoperative Complication Reactions

Of these 40 studies, 20 reported patients with adverse reactions during surgery [9, 11, 14, 18, 19, 20, 22, 24, 25, 29, 32, 33, 34, 35, 36, 38, 40, 43, 44, 47]. We used a fixed effects model to analyze these cases ($I^2 = 0\%$, p =0.61). These results showed (Fig. 7) that the RR (95% CI) value was 1.37 [1.10; 1.71]. This suggests that the surgical method, as indicated by the meta-analysis, demonstrates a drastically higher occurrence of intraoperative complications during the surgery for uterus removal compared to the method for preserving the uterus.

Fig. 2. Risk of bias and applicability.

Comparison on the Postoperative Complication Reactions of Different Surgical Methods

Of these 40 studies, 17 discussed patients with postoperative complications after surgery [9, 11, 14, 16, 18, 19, 24, 25, 33, 36, 39, 40, 42, 43, 44, 46, 47]. Using a random effects model for analysis (I² = 54%, p < 0.01), the study revealed (Fig. 8) that the RR (95% CI) value was 1.10 [0.83; 1.45]. This meta-analysis suggested that different surgical methods did not notably affect adverse reactions after surgery.

Evaluation of the Meta-analysis Model Publication Bias

We created a funnel plot (Fig. 9A) and a Galbraith plot (Fig. 9B) based on various outcome indicators. In the funnel plot, the p value of Egger's test was 0.43981, with most research data points evenly distributed at the bottom of the funnel and uniformly distributed on both sides of the vertical line. In the Galbraith plot, most research data points were uniformly scattered above and below the black horizontal line. These findings indicate the absence of publication bias in this meta-analysis.

Sensitivity Analysis

By comparing the outcomes of the fixed effects and random effects models for sensitivity analysis, as illustrated in Fig.

10, we observed that the analyses of various research indicators showed a general agreement between the two models. This finding suggests the robustness of the results. An RR (95% CI) of 1.00 [0.98; 1.03] indicated the absence of markedly sensitive articles.

Discussion

Uterine prolapse (UP), which typically occurs postpartum or during menopause, is a common gynecological issue in females. It involves the downward displacement of the uterus, possibly protruding into the vagina. This condition may result in discomfort, pain, and other physical inconveniences that significantly affect a patient's quality of life. Treatment methods for UP include conservative and surgical intervention. Surgical approaches usually involve uterine preservation or removal, each of which has its advantages and limitations. Some published studies have suggested that uterine preservation and uterine removal methods effectively address UP [41, 49, 50, 51]. However, a definitive conclusion is lacking, and further research is needed to assess their relative merits.

This meta-analysis involved 40 articles covering the surgical methods for 25,896 patients with UP, including uterine preservation and removal. We thoroughly screened and analyzed these publications to assess the comparative outcomes of different surgical approaches for treating UP. Our

Study or	Experim	ental	C	ontrol		Risk Ratio	Risk Ratio
Subgroup	Events	Total	Events	Total	Weight	MH, Random, 95% Cl	MH, Random, 95% CI
Study category = retry	spective	1					
This et al. 2011	78	98	74	98	1 2%	1 05 [0 91. 1 23]	
Zhu et al. 2021	47	50	47	50	2.0%	1 00 [0.01; 1.20]	_
Wang et al. 2022	64	60	41	18	1 /0/	1.00 [0.91, 1.10]	Ter.
Valig et al. 2022	04	09	250	277	2 20/	1.09 [0.95, 1.24]	
Yan et al. 2023	100	95	259	211	3.2%	1.04 [0.99, 1.09]	
fan et al. 2023	100	111	259	211	3.3%	1.04 [1.00, 1.09]	
Sukur et al, 2020	67	86	37	46	0.9%	0.97 [0.81; 1.16]	
Bedford et al, 2013	141	160	80	104	1.9%	1.07 [0.96; 1.18]	
Bedford et al, 2013	111	160	63	104	0.9%	1.15 [0.95; 1.38]	
Stanford et al, 2015	59	61	51	51	3.3%	0.97 [0.92; 1.01]	<u>-</u>
Stanford et al, 2015	28	29	51	51	2.7%	0.97 [0.90; 1.03]	
Al-Badr et al, 2017	22	26	10	24	0.1%	2.03 [1.23; 3.35]	· · · ·
Romanzi et al, 2012	91	100	86	100	2.0%	1.06 [0.96; 1.17]	
Campagna et al, 2022	54	58	68	78	1.8%	1.07 [0.96; 1.19]	-
Campagna et al, 2022	51	58	66	78	1.4%	1.04 [0.91; 1.19]	
Pan et al, 2016	30	34	47	65	0.8%	1.22 [1.00; 1.48]	
Lone et al, 2018	76	81	32	44	0.9%	1.29 [1.07; 1.56]	
Hai-Yahva et al. 2020	100	106	51	53	2.6%	0.98 [0.91: 1.05]	
o et al 2015	86	120	13	26	0.2%	1 43 [0 96: 2 14]	T
Li et al. 2020	12	12	11	11	1.0%	1.00 [0.85: 1.18]	
Gagvor et al 2021	243	251	39	43	2.0%	1.07 [0.97 1 18]	
Yuan et al 2021	184	260	117	130	2.0%	0 79 [0 71 0 87]	
Forde et al. 2021	000	200	652	690	2.0%	1 00 [0.09: 1 02]	
Forde et al, 2017	000	921	003	000	3.0%	1.00 [0.96, 1.02]	
Forde et al, 2017	861	921	037	080	3.1%	1.00 [0.97; 1.02]	
Forde et al, 2017	112	921	597	680	3.4%	0.95 [0.92; 0.99]	-
Unughtai et al, 2018	441	455	434	455	3.7%	1.02 [0.99; 1.04]	
Chughtai et al, 2018	425	455	425	455	3.6%	1.00 [0.97; 1.04]	1
Chughtai et al, 2018	412	455	400	455	3.3%	1.03 [0.98; 1.08]	—
van et al, 2003	28	30	39	44	1.3%	1.05 [0.91; 1.21]	
Carlin et al, 2023	82	96	85	96	1.8%	0.96 [0.86; 1.08]	
Chou et al, 2021	8	16	58	66	0.2%	0.57 [0.35; 0.94]	
Chou et al, 2021	6	11	23	26	0.1%	0.62 [0.35; 1.08]	· · · · · · · · · · · · · · · · · · ·
Plair et al. 2021	90	97	46	50	2.0%	1.01 [0.91; 1.11]	-
McDermott et al. 2011	20	24	57	65	0.8%	0.95 [0.78: 1.16]	
Husby et al. 2019	3645	4045	2615	2786	3.9%	0.96 [0.95: 0.97]	•
Husby et al. 2019	3645	4045	326	416	3 1%	1 15 [1 09: 1 21]	
Mag et al. 2023	44	60	35	410	0.7%	0.94 [0.76; 1.17]	
Mao et al. 2023	52	60	12	45	1 50/	0.03 [0.92: 1.05]	
	50	60	42	45	1.0%	0.93 [0.82, 1.03]	
Mileri et al. 2020	50	50	40	40	1.270	0.94 [0.80, 1.09]	
	30	52	39	52	0.0%	0.97 [0.78, 1.22]	- 19 B
Total (95% CI)	100.01.2	4/49	16	0099	14,4%	1.01 [0.98; 1.04]	Ţ
Heterogeneity: Tau" = 0.00)29; Chi ⁻ =	141.14	, df = 38 (P < 0.0	1); 1- = 735	%	
Study category = pros	pective						
Chang et al. 2023	28	28	31	31	2.8%	1 00 [0 94 1 07]	
Gracia et al 2015	30	30	15	15	1.9%	1 00 [0 90 1 11]	
Gracia et al. 2015	30	30	15	15	1.070	1.00 0.00, 1.11	
Gradia et al, 2015			1.1	1.0	1 00%	1 00 0 00 1 111	
Illiana at al 2020	00	00	EA	EA	1.9%	1.00 [0.90; 1.11]	*
Illiano et al, 2020	82	82	54	54	1.9% 3.6%	1.00 [0.90; 1.11] 1.00 [0.97; 1.03]	
Illiano et al, 2020 Ker et al, 2018 Amieri et al 2022	82 30	82 30	54 64	54 66	1.9% 3.6% 3.4%	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023	82 30 42	82 30 44	54 64 39	54 66 44	1.9% 3.6% 3.4% 1.6%	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 3owen et al, 2023	30 82 30 42 19	82 30 44 41	54 64 39 29	54 66 44 41	1.9% 3.6% 3.4% 1.6% 0.2%	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Fotal (95% CI)	82 30 42 19	82 30 44 41 285	54 64 39 29	54 66 44 41 266	1.9% 3.6% 3.4% 1.6% 0.2% 15.4%	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% CI) Heterogeneity: Tau ² = < 0.	82 30 42 19 0001; Chi ²	82 30 44 41 285 = 7.38	54 64 39 29 . df = 6 (P	54 66 44 41 266 = 0.29)	1.9% 3.6% 3.4% 1.6% 0.2% 15.4%	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% CI) Heterogeneity: Tau ² = < 0.	82 30 42 19 0001; Chi ²	82 30 44 41 285 = 7.38	54 64 39 29 , df = 6 (P	54 66 44 41 266 = 0.29)	1.9% 3.6% 3.4% 1.6% 0.2% 15.4% ; ² = 19%	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% CI) Heterogeneity: Tau ² = < 0. Study_category = rand	82 30 42 19 0001; Chi ²	82 30 44 41 285 = 7.38	54 64 39 29 , df = 6 (P	54 66 44 41 266 = 0.29)	1.9% 3.6% 3.4% 1.6% 0.2% 15.4% ; ² = 19%	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% Cl) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021	82 30 42 19 0001; Chi ²	82 30 44 41 285 = 7.38	54 64 39 29 , df = 6 (P	54 66 44 41 266 = 0.29) 888	1.9% 3.6% 3.4% 1.6% 0.2% 15.4% (; ² = 19%	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% Cl) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021 Nager et al, 2021	82 30 42 19 0001; Chi ² lomized 66 55	82 30 44 41 285 = 7.38 87 83	54 64 39 29 , df = 6 (P 75 60	54 66 44 41 266 = 0.29) 888 79	1.9% 3.6% 3.4% 1.6% 0.2% 15.4% ; ² = 19%	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04] 0.89 [0.77; 1.03] 0.87 [0.72; 1.06]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% CI) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021 Nager et al, 2021	82 30 42 19 0001; Chi ² lomized 66 55 47	82 30 44 41 285 = 7.38 87 83 80	54 64 39 29 . df = 6 (P 75 60 54	54 66 44 41 266 = 0.29) 888 79 78	1.9% 3.6% 3.4% 1.6% 0.2% 15.4% ; ² = 19% 1.2% 0.8% 0.6%	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04] 0.89 [0.77; 1.03] 0.87 [0.72; 1.06] 0.85 [0.67; 1.07]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% CI) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021 Nager et al, 2021 Nager et al, 2021	82 30 42 19 0001; Chi ² lomized 66 55 47 40	82 30 44 41 285 = 7.38 87 83 80 79	54 64 39 29 df = 6 (P 75 60 54 50	54 66 44 41 266 = 0.29) 888 79 78 78 76	$\begin{array}{c} 1.9\%\\ 3.6\%\\ 3.4\%\\ 1.6\%\\ 0.2\%\\ 15.4\%\\ 15.4\%\\ 1.2\%\\ 0.8\%\\ 0.6\%\\ 0.5\%\end{array}$	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04] 0.89 [0.77; 1.03] 0.87 [0.72; 1.06] 0.85 [0.67; 1.07] 0.77 [0.59; 1.01]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% Cl) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021 Nager et al, 2021 Nager et al, 2021 Nager et al, 2021	82 30 42 19 0001; Chi ² lomized 66 55 47 40 36	82 30 44 41 285 = 7.38 87 83 80 79 78	54 64 39 29 , df = 6 (P 75 60 54 50 50	54 66 44 41 266 = 0.29) 888 79 78 76 79	1.9% 3.6% 3.4% 1.6% 0.2% 15.4% 15.4% (; ² = 19% 1.2% 0.8% 0.8% 0.5% 0.5% 0.4%	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04] 0.89 [0.77; 1.03] 0.87 [0.72; 1.06] 0.85 [0.67; 1.07] 0.77 [0.59; 1.01] 0.73 [0.54; 0.98]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% Cl) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021 Nager et al, 2021	82 30 42 19 0001; Chi ² lomized 66 55 47 40 36 24	82 30 44 41 285 = 7.38 87 83 80 79 78 87	54 64 39 29 df = 6 (P 75 60 54 50 50 27	54 66 44 41 266 = 0.29) 888 79 78 76 79 88	$\begin{array}{c} 1.9\%\\ 3.6\%\\ 3.4\%\\ 1.6\%\\ 0.2\%\\ 15.4\%\\ 1.2\%\\ 0.8\%\\ 0.8\%\\ 0.6\%\\ 0.5\%\\ 0.4\%\\ 0.2\%\end{array}$	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04] 0.89 [0.77; 1.03] 0.87 [0.72; 1.06] 0.85 [0.67; 1.07] 0.77 [0.59; 1.01] 0.73 [0.54; 0.98] 0.90 [0.57; 1.43]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% Cl) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021 Nager et al, 2021 Rogers et al, 2019 Rogers et al, 2022	82 30 42 19 0001; Chi ² lomized 66 55 47 40 36 24 40	82 30 44 41 285 = 7.38 87 83 80 79 78 87 87 87	54 64 39 29 df = 6 (P 75 60 54 50 50 50 27 34	54 66 44 41 266 = 0.29) 88 79 78 76 79 88 88	$\begin{array}{c} 1.9\%\\ 3.6\%\\ 3.4\%\\ 1.6\%\\ 0.2\%\\ 15.4\%\\ 1.2\%\\ 0.8\%\\ 0.8\%\\ 0.6\%\\ 0.5\%\\ 0.4\%\\ 0.2\%\\ 0.3\%\end{array}$	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04] 0.89 [0.77; 1.03] 0.87 [0.72; 1.06] 0.85 [0.67; 1.07] 0.77 [0.59; 1.01] 0.73 [0.54; 0.98] 0.90 [0.57; 1.43] 1.19 [0.84; 1.69]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% CI) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021 Nager et al, 2022 Isett-Kay et al, 2022	82 30 42 19 0001; Chi ² lomized 66 55 47 40 36 24 40 22	82 30 44 41 285 = 7.38 87 83 80 79 78 87 87 87 29	54 64 39 29 df = 6 (P 75 60 54 50 50 27 34 28	54 66 44 41 266 = 0.29) 88 79 78 76 79 88 88 83 33	$\begin{array}{c} 1.9\%\\ 3.6\%\\ 3.4\%\\ 1.6\%\\ 0.2\%\\ 15.4\%\\ 15.4\%\\ 1.2\%\\ 0.8\%\\ 0.6\%\\ 0.6\%\\ 0.5\%\\ 0.4\%\\ 0.2\%\\ 0.3\%\\ 0.5\%\\ 0.5\%\end{array}$	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04] 0.89 [0.77; 1.03] 0.87 [0.72; 1.06] 0.85 [0.67; 1.07] 0.77 [0.59; 1.01] 0.73 [0.54; 0.98] 0.90 [0.57; 1.43] 1.19 [0.84; 1.69] 0.89 [0.70; 1 15]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% CI) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021 Nager et al, 2021 Jager et al, 2021 Digtz et al, 2022 Dietz et al, 2020	82 30 42 19 0001; Chi ² lomized 66 55 47 40 36 24 40 36 22 30	82 30 44 41 285 = 7.38 87 83 80 79 78 87 87 87 87 87 87 87 931	54 64 39 29 df = 6 (P 75 60 54 50 50 27 34 8 28	54 66 44 41 266 = 0.29) 888 79 78 76 79 888 83 35	$\begin{array}{c} 1.9\%\\ 3.6\%\\ 3.4\%\\ 1.6\%\\ 0.2\%\\ 15.4\%\\ 15.4\%\\ 15.4\%\\ 1^2=19\%\\ 1.2\%\\ 0.8\%\\ 0.6\%\\ 0.6\%\\ 0.5\%\\ 0.4\%\\ 0.2\%\\ 0.3\%\\ 0.5\%\\ 0.8\%$	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04] 0.89 [0.77; 1.03] 0.87 [0.72; 1.06] 0.85 [0.67; 1.07] 0.77 [0.59; 1.01] 0.73 [0.54; 0.98] 0.90 [0.57; 1.43] 1.19 [0.84; 1.69] 0.89 [0.70; 1.15] 1.30 [1.06; 1.60]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% Cl) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021 Nager et al, 2021 Dietz et al, 2010 Detollengager et al, 2015	82 30 42 19 0001; Chi ² lomized 66 55 47 40 36 24 40 22 30 101	82 30 44 41 285 = 7.38 87 83 80 79 78 87 87 87 87 29 1 105	54 64 39 29 df = 6 (P 75 60 54 50 50 27 34 28 26 202	54 66 44 41 266 = 0.29) 88 79 78 76 79 88 88 33 35 102	$\begin{array}{c} 1.9\%\\ 3.6\%\\ 3.4\%\\ 1.6\%\\ 0.2\%\\ 15.4\%\\ 1.2\%\\ 0.8\%\\ 0.6\%\\ 0.5\%\\ 0.4\%\\ 0.2\%\\ 0.3\%\\ 0.5\%\\ 0.8\%\\ 0.5\%\\ 0.3\%\\ 0.5\%\\ 0.8\%\\ 0.5\%\\ 0.8\%\\ 0.5\%\\ 0.8\%\\ 0.5\%\\ 0.8\%\\ 0.5\%\\ 0.8\%$	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04] 0.89 [0.77; 1.03] 0.87 [0.72; 1.06] 0.85 [0.67; 1.07] 0.77 [0.59; 1.01] 0.73 [0.54; 0.98] 0.90 [0.57; 1.43] 1.19 [0.84; 1.69] 0.89 [0.70; 1.15] 1.30 [1.06; 1.60] 0.96 [0.93; 1.00]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% Cl) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021 Nager et al, 2022 Zett-Kay et al, 2022 Dietz et al, 2010 Detollenaere et al, 2015 Schulten et al, 2020	82 30 42 19 0001; Chi ² lomized 66 55 47 40 36 24 40 22 30 101	82 30 44 41 285 = 7.38 87 87 87 87 87 87 87 87 87 29 31 1002	54 64 39 29 . df = 6 (P 75 60 54 50 50 27 34 28 26 103	54 66 44 41 266 = 0.29) 888 79 78 76 79 88 88 33 35 103	$\begin{array}{c} 1.9\%\\ 3.6\%\\ 3.4\%\\ 1.6\%\\ 0.2\%\\ 15.4\%\\ 1.2\%\\ 0.8\%\\ 0.6\%\\ 0.6\%\\ 0.4\%\\ 0.2\%\\ 0.3\%\\ 0.5\%\\ 0.8\%\\ 3.5\%\\ 0.8\%\\ 3.5\%\\ 0.4\%\\ 1.4\%\\ 0.4\%\\ 0.1\%\\ 0.4\%$	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04] 0.89 [0.77; 1.03] 0.87 [0.72; 1.06] 0.85 [0.67; 1.07] 0.77 [0.59; 1.01] 0.73 [0.54; 0.98] 0.90 [0.57; 1.43] 1.19 [0.84; 1.69] 0.89 [0.70; 1.15] 1.30 [1.06; 1.60] 0.96 [0.93; 1.00] 0.87 [0.75; 0.90]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2018 Bowen et al, 2023 Total (95% Cl) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021 Nager et al, 2021 Dista et al, 2022 Dietz et al, 2010 Detollenaere et al, 2015 Schulten et al., 2019	82 30 42 19 0001; Chi ² lomized 66 55 47 40 36 24 40 22 30 101 77	82 30 44 41 285 = 7.38 87 83 87 87 87 87 87 87 87 87 87 29 31 105 105	54 64 39 29 df = 6 (P 75 60 54 50 50 57 34 28 26 103 89	54 66 44 41 266 = 0.29) 88 79 78 76 79 88 88 33 35 103 102	1.9% 3.6% 3.4% 1.6% 0.2% 15.4% 15.4% 1.2% 0.8% 0.6% 0.6% 0.4% 0.2% 0.2% 0.3% 0.5% 0.8% 3.5% 1.5% 0.8% 3.5% 1.5% 0.2% 0.2% 0.5% 0.2% 0.2% 0.5% 0.2% 0.4% 0.2% 0.2% 0.4% 0.2% 0.2% 0.4% 0.5% 0.4% 0.2% 0.5% 0.4% 0.5% 0.5% 0.4% 0.5% 0.2% 0.5% 0.2% 0.5% 0.2% 0.5% 0.2% 0.2% 0.5% 0.2% 0.5% 0.2% 0.5% 0.2% 0.5% 0.2% 0.5% 0.2% 0.5% 0.2% 0.5% 0.2% 0.5% 0.2% 0.5% 0.2% 0.	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04] 0.89 [0.77; 1.03] 0.87 [0.72; 1.06] 0.85 [0.67; 1.07] 0.77 [0.59; 1.01] 0.73 [0.54; 0.98] 0.90 [0.57; 1.43] 1.19 [0.84; 1.69] 0.89 [0.70; 1.15] 1.30 [1.06; 1.60] 0.96 [0.93; 1.00] 0.87 [0.76; 0.99]	
Iliano et al, 2020 Ker et al, 2018 Arcieri et al, 2018 Bowen et al, 2023 Total (95% Cl) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021 Nager et al, 2021 Social et al, 2022 Zett-Kay et al, 2022 Dietz et al, 2010 Detollenaere et al, 2015 Schulten et al, 2019 Total (95% Cl)	82 30 42 19 0001; Chi ² 10mized 66 55 47 40 36 24 40 22 30 101 77	82 30 44 41 285 = 7.38 87 83 80 79 78 87 87 87 87 29 31 105 102 82 87	54 64 39 29 df = 6 (P 75 60 54 50 50 57 34 28 26 103 89 df = 10 /P	54 66 44 41 266 = 0.29) 88 79 78 76 79 88 83 33 35 103 103 102 82 82	1.9% 3.6% 3.4% 1.6% 0.2% 15.4% 15.4% 0.8% 0.8% 0.6% 0.4% 0.5% 0.4% 0.2% 0.3% 0.5% 0.8% 3.5% 1.4% 1.2% 0.8% 0.5% 0.2% 0.2% 0.5% 0.2% 0.5% 0.4% 0.2% 0.5% 0.4% 0.5% 0.4% 0.5% 0.4% 0.5% 0.4% 0.5% 0.4% 0.5% 0.4% 0.5% 0.4% 0.5% 0.4% 0.5% 0.4% 0.5% 0.4% 0.5% 0.4% 0.5% 0.4% 0.5% 0.4% 0.5% 0.4% 0.5% 0.	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04] 0.89 [0.77; 1.03] 0.87 [0.72; 1.06] 0.85 [0.67; 1.07] 0.77 [0.59; 1.01] 0.73 [0.54; 0.98] 0.90 [0.57; 1.43] 1.19 [0.84; 1.69] 0.89 [0.70; 1.15] 1.30 [1.06; 1.60] 0.96 [0.93; 1.00] 0.87 [0.76; 0.99] 0.92 [0.83; 1.02]	
lliano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Fotal (95% Cl) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021 Nager et al, 2022 Zett-Kay et al, 2022 Dietz et al, 2010 Detollenaere et al, 2015 Schulten et al., 2019 Fotal (95% Cl) Heterogeneity: Tau ² = 0.07	82 30 42 19 0001; Chi ² Iomized 66 55 47 40 36 24 40 22 30 101 77	82 30 44 41 285 5 7 83 80 79 78 87 87 87 87 87 29 31 105 102 848 21.09,	54 64 39 29 df = 6 (P 75 60 54 50 50 50 57 34 28 26 103 89 df = 10 (P	54 66 44 41 266 = 0.29) 88 79 78 76 79 88 88 33 35 103 102 849 9 = 0.02	$\begin{array}{c} 1.9\%\\ 3.6\%\\ 3.4\%\\ 1.6\%\\ 0.2\%\\ 15.4\%\\ 1.2\%\\ 0.8\%\\ 0.6\%\\ 0.6\%\\ 0.4\%\\ 0.5\%\\ 0.4\%\\ 0.5\%\\ 0.4\%\\ 0.5\%\\ 0.4\%\\ 0.5\%\\ 0.4\%\\ 0.5\%\\ 0.4\%\\ 0.5\%\\ 0.4\%\\ 0.5\%\\ 0.4\%\\ 0.5\%\\ 0.4\%\\ 0.5\%\\ 0.4\%\\ 0.5\%\\ 0.4\%\\ 0.5\%$	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04] 0.89 [0.77; 1.03] 0.87 [0.72; 1.06] 0.85 [0.67; 1.07] 0.77 [0.59; 1.01] 0.73 [0.54; 0.98] 0.90 [0.57; 1.43] 1.19 [0.84; 1.69] 0.89 [0.70; 1.15] 1.30 [1.06; 1.60] 0.96 [0.93; 1.00] 0.87 [0.76; 0.99] 0.92 [0.83; 1.02]	
Illiano et al, 2020 Ker et al, 2018 Arcieri et al, 2023 Bowen et al, 2023 Total (95% Cl) Heterogeneity: Tau ² = < 0. Study_category = rand Nager et al, 2021 Nager et al, 2021 Dista et al, 2019 Cotollenaere et al, 2015 Schulten et al., 2019 Total (95% Cl)	82 30 42 19 0001; Chi ² lomized 66 55 47 40 36 24 40 22 30 101 77 106; Chi ² =	82 30 44 41 285 5 7 87 83 80 79 78 87 87 87 87 87 87 29 31 105 102 848 21.09, 15882	54 64 39 29 df = 6 (P 75 60 54 50 50 27 34 28 26 103 89 df = 10 (P	54 66 44 41 266 = 0.29) 88 79 78 76 79 88 88 83 33 35 103 102 849 9 = 0.02 10014	$\begin{array}{c} 1.9\%\\ 3.6\%\\ 3.4\%\\ 1.6\%\\ 0.2\%\\ 15.4\%\\ (1^2 = 19\%)\\ 1.2\%\\ 0.8\%\\ 0.6\%\\ 0.6\%\\ 0.6\%\\ 0.6\%\\ 0.6\%\\ 0.4\%\\ 0.2\%\\ 0.3\%\\ 0.5\%\\ 0.4\%\\ 0.5\%\\ 0.8\%\\ 3.5\%\\ 1.4\%\\ 10.2\%\\); \ l^2 = 53\%\\ 100.0\%\\ \end{array}$	1.00 [0.90; 1.11] 1.00 [0.97; 1.03] 1.03 [0.99; 1.08] 1.08 [0.95; 1.22] 0.66 [0.45; 0.96] 1.01 [0.98; 1.04] 0.89 [0.77; 1.03] 0.87 [0.72; 1.06] 0.85 [0.67; 1.07] 0.77 [0.59; 1.01] 0.73 [0.54; 0.98] 0.90 [0.57; 1.43] 1.19 [0.84; 1.69] 0.89 [0.70; 1.15] 1.30 [1.06; 1.60] 0.96 [0.93; 1.00] 0.87 [0.76; 0.99] 0.92 [0.83; 1.02]	

Fig. 3. Subgroup analysis. MH, Mantel-Haenszel; CI, confidence intervals.

660200 ST	Experin	nental	C	ontrol	12552-0000 20025	Risk Ratio	Risk Ratio
Study	Events	Total	Events	Total	Weight	MH, Random, 95% CI	MH, Random, 95% Cl
Thys et al. 2011	78	98	74	98	1.2%	1 05 [0 91: 1 23]	
Zhu et al. 2021	47	50	47	50	2.0%	1.00 [0.91; 1.10]	-
Wang et al, 2022	64	69	41	48	1.4%	1.09 [0.95; 1.24]	
Chang et al, 2023	28	28	31	31	2.8%	1.00 [0.94; 1.07]	=
Gracia et al, 2015	30	30	15	15	1.9%	1.00 [0.90; 1.11]	+
Gracia et al, 2015	30	30	15	15	1.9%	1.00 [0.90; 1.11]	-
Illiano et al, 2020	82	82	54	54	3.6%	1.00 [0.97; 1.03]	•
Yan et al, 2023	92	95	259	277	3.2%	1.04 [0.99; 1.09]	<u>+</u>
Yan et al, 2023	108	111	259	277	3.3%	1.04 [1.00; 1.09]	*
Sukur et al, 2020	67	86	37	46	0.9%	0.97 [0.81; 1.16]	
Ker et al, 2018	30	30	64	66	3.4%	1.03 [0.99; 1.08]	
Nager et al, 2021	66	87	15	88	1.2%	0.89 [0.77; 1.03]	
Nager et al, 2021	55	80	54	79	0.6%	0.87 [0.72, 1.00]	
Nager et al. 2021	47	70	50	76	0.0%	0.05 [0.07, 1.07]	
Nager et al. 2021	36	78	50	70	0.3%	0.77 [0.53, 1.01]	
Bedford et al. 2013	141	160	86	104	1.9%	1 07 [0.96: 1 18]	-
Bedford et al. 2013	111	160	63	104	0.9%	1.15 [0.95; 1.38]	
Nager et al. 2019	24	87	27	88	0.2%	0.90 [0.57: 1.43]	
Stanford et al. 2015	59	61	51	51	3.3%	0.97 [0.92: 1.01]	
Stanford et al, 2015	28	29	51	51	2.7%	0.97 [0.90; 1.03]	—
Al-Badr et al, 2017	22	26	10	24	0.1%	2.03 [1.23; 3.35]	T
Romanzi et al, 2012	91	100	86	100	2.0%	1.06 [0.96; 1.17]	
Rogers et al, 2022	40	87	34	88	0.3%	1.19 [0.84; 1.69]	
Campagna et al, 2022	54	58	68	78	1.8%	1.07 [0.96; 1.19]	
Campagna et al, 2022	51	58	66	78	1.4%	1.04 [0.91; 1.19]	-
Pan et al, 2016	30	34	47	65	0.8%	1.22 [1.00; 1.48]	
Izett-Kay et al, 2022	22	29	28	33	0.5%	0.89 [0.70; 1.15]	
Lone et al, 2018	76	81	32	44	0.9%	1.29 [1.07; 1.56]	
Haj-Yahya et al, 2020	100	106	51	53	2.6%	0.98 [0.91; 1.05]	-
Lo et al, 2015	86	120	13	26	0.2%	1.43 [0.96; 2.14]	
Dietz et al, 2010	30	31	26	35	0.8%	1.30 [1.06; 1.60]	
	242	251	20	11	1.0%	1.00 [0.85; 1.18]	
Vuon ot al. 2021	243	201	117	43	2.0%	0.70 [0.97, 1.10]	_ T
Forde et al. 2017	886	921	653	680	3.8%	1 00 [0.98. 1 02]	
Forde et al. 2017	861	921	637	680	3.7%	1 00 [0.97: 1 02]	+
Forde et al. 2017	772	921	597	680	3.4%	0.95 [0.92: 0.99]	
Chughtai et al. 2018	441	455	434	455	3.7%	1.02 [0.99; 1.04]	+
Chughtai et al, 2018	425	455	425	455	3.6%	1.00 [0.97; 1.04]	-
Chughtai et al, 2018	412	455	400	455	3.3%	1.03 [0.98; 1.08]	
Arcieri et al, 2023	42	44	39	44	1.6%	1.08 [0.95; 1.22]	-
van et al, 2003	28	30	39	44	1.3%	1.05 [0.91; 1.21]	
Carlin et al, 2023	82	96	85	96	1.8%	0.96 [0.86; 1.08]	
Detollenaere et al, 2015	101	105	103	103	3.5%	0.96 [0.93; 1.00]	-
Schulten et al., 2019	77	102	89	102	1.4%	0.87 [0.76; 0.99]	
Chou et al, 2021	8	16	58	66	0.2%	0.57 [0.35; 0.94]	·
Chou et al, 2021	6	11	23	26	0.1%	0.62 [0.35; 1.08]	<u>-</u>
Plair et al, 2021	90	97	46	50	2.0%	1.01 [0.91; 1.11]	
McDermott et al, 2011	20	24	57	65	0.8%	0.95 [0.78; 1.16]	
Husby et al, 2019	3645	4045	2615	2/86	3.9%	0.96 [0.95; 0.97]	
Map et al. 2019	3045	4045	320	410	0.7%	0.04 [0.76+1.47]	
Mao et al 2023	44	60	30	40	1.5%	0.94 [0.70, 1.17]	
Mao et al. 2023	50	60	42	45	1 2%	0.95 [0.02, 1.05]	
Milani et al. 2020	38	52	30	40	0.6%	0.97 [0.00, 1.09]	
Bowen et al. 2023	19	41	29	41	0.2%	0.66 [0.45: 0.96]	.]
2							
Total (95% Cl)	NOT: 01-2	15882		10014	100.0%	1.00 [0.98; 1.03]	
Heterogeneity: lau ⁺ = 0.00	025; Chi ⁺ =	= 179.10), at = 56	(P < 0.0	n); I ⁻ = 69 ⁶	/0	0.5 1 2

Fig. 4. Meta-analysis forest map comparing the success rate of the different surgical methods. Note: The success rate is the objective success rate.

Study	Expe Mean	rimental SD	Total	Mean	Control SD	Total	Weight	Std. Mean Difference IV, Random, 95% CI	Std. IV, I	Mean I Randor	Differe n, 95%	nce Cl
Thys et al, 2011	101.00	22.0000	98	67.00	20.0000	98	4.2%	1.61 [1.29; 1.93]				
Wang et al, 2022	110.45	31.7200	69	62.91	25.6300	48	4.0%	1.61 [1.18; 2.03]				
Yan et al, 2023	138.00	24.3000	95	104.00	30.5000	277	4.3%	1.17 [0.92; 1.42]			-	-
Yan et al, 2023	129.00	31.6000	111	104.00	30.5000	277	4.3%	0.81 [0.58; 1.04]				
Ker et al, 2018	78.00	16.0000	30	46.00	20.6000	66	3.9%	1.64 [1.15; 2.14]				
Bedford et al, 2013	140.00	36.7000	160	120.00	37.5000	104	4.3%	0.54 [0.29; 0.79]			-	
Bedford et al, 2013	140.00	36.7000	160	120.00	37.5000	104	4.3%	0.54 [0.29; 0.79]				
Nager et al, 2019	156.70	43.9000	87	111.50	39.7000	88	4.2%	1.08 [0.76; 1.39]			÷	-
Campagna et al, 2022	150.00	37.5000	58	120.00	30.0000	78	4.1%	0.89 [0.54; 1.25]			-	-
Campagna et al, 2022	150.00	37.5000	58	120.00	30.0000	78	4.1%	0.89 [0.54; 1.25]			-	
Pan et al, 2016	128.41	39.7400	34	95.91	36.6300	65	4.0%	0.86 [0.42; 1.29]			-	- 6
Lo et al, 2015	65.40	15.8000	120	48.80	12.9000	26	4.0%	1.08 [0.63; 1.52]				-
Li et al, 2020	176.00	13.5000	12	154.00	12.8000	11	2.9%	1.61 [0.65; 2.57]				
Gagyor et al, 2021	125.00	30.0000	251	120.00	25.8000	43	4.2%	0.17 [-0.15; 0.49]		-	-	
Yuan et al, 2021	144.00	35.5000	260	96.00	27.5000	130	4.3%	1.45 [1.22; 1.68]				-
Arcieri et al, 2023	180.00	14.0000	44	175.00	33.3000	44	4.0%	0.19 [-0.22; 0.61]		-	+	
Carlin et al, 2023	95.00	62.0000	96	65.00	48.0000	96	4.2%	0.54 [0.25; 0.83]				
Detollenaere et al, 2015	72.00	21.0000	105	59.00	13.0000	103	4.2%	0.74 [0.46; 1.02]				
Chou et al, 2021	176.60	99.2000	16	97.30	20.4000	66	3.6%	1.68 [1.07; 2.29]				+
Chou et al, 2021	153.70	53.9000	11	99.40	22.5000	26	3.2%	1.54 [0.74; 2.34]			+	+
McDermott et al, 2011	127.00	45.0000	24	127.00	33.0000	65	3.9%	0.00 [-0.47; 0.47]		-	-	
Mao et al, 2023	129.60	40.4000	60	120.20	37.1000	45	4.1%	0.24 [-0.15; 0.63]		+	+	
Mao et al, 2023	129.60	40.4000	60	120.20	37.1000	45	4.1%	0.24 [-0.15; 0.63]		-		
Mao et al, 2023	129.60	40.4000	60	120.20	37.1000	45	4.1%	0.24 [-0.15; 0.63]		-	+	
Milani et al, 2020	77.00	20.0000	52	113.00	29.0000	52	4.0%	-1.43 [-1.87; -1.00]	-	-		
Total (95% CI)	(L)		2131			2080	100.0%	0.78 [0.49; 1.07]			•	
Heterogeneity: Tau ² = 0.44	13; Chi ²	= 278.35,	df = 24	+ (P < 0.0)1); I ² = 91	%				I T		
									-2 -	-1 0	1	2

Fig. 5. Meta-analysis forest map on comparing the duration of different surgical methods. SD, Standard Deviation.

	Exp	erimental			Control			Std. Mean Difference	Std. N	lean Differe	ence
Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Ra	andom, 95%	6 CI
Thys et al, 2011	358.00	235.0000	98	250.00	210.0000	98	3.9%	0.48 [0.20; 0.77]		+	
Wang et al, 2022	138.77	50.2600	69	73.61	35.0500	48	3.9%	1.45 [1.04; 1.86]			
Yan et al, 2023	100.00	25.0000	95	50.00	28.3000	277	3.9%	1.81 [1.55; 2.08]		-	
Yan et al, 2023	100.00	21.7000	111	50.00	28.3000	277	3.9%	1.88 [1.62; 2.13]		+	
Ker et al, 2018	36.70	18.1000	30	18.50	6.9000	66	3.9%	1.56 [1.07; 2.05]			
Bedford et al, 2013	50.00	160.0000	160	50.00	116.0000	104	3.9%	0.00 [-0.25; 0.25]		-	
Bedford et al, 2013	50.00	160.0000	160	50.00	116.0000	104	3.9%	0.00 [-0.25; 0.25]			
Stanford et al, 2015	50.00	50.0000	61	50.00	48.0000	51	3.9%	0.00 [-0.37; 0.37]			
Stanford et al, 2015	50.00	50.0000	29	50.00	48.0000	51	3.9%	0.00 [-0.46; 0.46]			
Al-Badr et al, 2017	382.70	203.4000	26	360.40	143.7000	24	3.8%	0.12 [-0.43; 0.68]		-	
Campagna et al, 2022	30.00	24.0000	58	30.00	18.0000	78	3.9%	0.00 [-0.34; 0.34]			
Campagna et al, 2022	30.00	24.0000	58	30.00	18.0000	78	3.9%	0.00 [-0.34; 0.34]			
Pan et al, 2016	86.77	38.7500	34	52.77	31.0500	65	3.9%	1.00 [0.56; 1.43]			
Lo et al, 2015	105.20	90.3000	120	79.60	64.8000	26	3.9%	0.29 [-0.13; 0.72]			
Li et al, 2020	54.40	4.5000	12	64.10	8.9000	11	3.7%	-1.34 [-2.27; -0.42]			
Gagyor et al, 2021	200.00	125.0000	251	150.00	225.0000	43	3.9%	0.35 [0.02; 0.67]		-+-	
Yuan et al, 2021	150.00	99.0000	260	50.00	30.8000	130	3.9%	1.21 [0.98; 1.43]		-	
Arcieri et al, 2023	30.00	33.3000	44	30.00	33.3000	44	3.9%	0.00 [-0.42; 0.42]			
Detollenaere et al, 2015	209.00	112.0000	105	202.00	74.0000	103	3.9%	0.07 [-0.20; 0.35]		1	
Chou et al, 2021	114.70	82.5000	16	85.80	89.1000	66	3.8%	0.33 [-0.22; 0.87]			
Chou et al, 2021	112.30	84.9000	11	68.70	85.2000	26	3.8%	0.50 [-0.21; 1.22]			
McDermott et al, 2011	164.00	141.0000	24	177.00	124.0000	65	3.9%	-0.10 [-0.57; 0.37]			
Mao et al, 2023	70.00	5.0000	60	40.00	2.5000	45	3.7%	7.23 [6.16; 8.29]			-
Mao et al, 2023	70.00	5.0000	60	40.00	2.5000	45	3.7%	7.23 [6.16; 8.29]			-
Mao et al, 2023	70.00	5.0000	60	40.00	2.5000	45	3.7%	7.23 [6.16; 8.29]			-
Milani et al, 2020	203.00	130.0000	52	342.00	187.0000	52	3.9%	-0.86 [-1.26; -0.45]		—	
Total (95% CI)			2064			2022	100.0%	1.14 [0.21; 2.07]		•	
Heterogeneity: Tau ² = 5.09	50; Chi ²	= 871.94, d	f = 25	(P < 0.01); I ² = 97%				1	1	
		and a second second second		•eco - 665666776	• George 1987				-5	0	5

Fig. 6. Meta-analysis forest map on comparing blood loss of different surgical methods.

Study	Experin Events	nental Total	Co Events	ontrol Total	Weight	Risk Rati MH, Random, S	io 95% (R MH, Ra	isk Rati ndom, 9	o 95% CI	
Thys et al, 2011	4	98	4	98	2.7%	1.00 [0.26; 3	3.89]		-	-	-	
Wang et al, 2022	3	69	4	48	2.3%	0.52 [0.12; 2	2.23]					
Yan et al, 2023	0	95	0	277	0.0%							
Yan et al, 2023	0	111	0	277	0.0%							
Bedford et al, 2013	0	160	1	104	0.5%	0.22 [0.01; 5	5.28]	-		:	-	
Bedford et al, 2013	0	160	1	104	0.5%	0.22 [0.01; 5	5.28]		•		-	
Nager et al, 2019	0	87	0	88	0.0%							
Stanford et al, 2015	3	61	7	51	2.9%	0.36 [0.10; 1	1.32]					
Stanford et al, 2015	3	29	7	51	3.0%	0.75 [0.21; 2	2.69]		_			
Romanzi et al, 2012	9	100	6	100	4.9%	1.50 [0.55; 4	4.06]			-	-	
Campagna et al, 2022	1	58	2	78	0.9%	0.67 [0.06; 7	7.24]		<u></u>	-		
Campagna et al, 2022	1	58	2	78	0.9%	0.67 [0.06; 7	7.24]			-	_	
Pan et al, 2016	4	34	6	65	3.4%	1.27 [0.39; 4	4.21]				-	
Lo et al, 2015	7	120	1	26	1.2%	1.52 [0.19; 1	1.80]					
Gagyor et al, 2021	15	251	4	43	4.4%	0.64 [0.22; 1	1.84]		-			
Yuan et al, 2021	28	260	3	130	3.6%	4.67 [1.45; 1	5.06]					
Forde et al, 2017	22	921	11	680	9.5%	1.48 [0.72; 3	3.02]					
Forde et al, 2017	22	921	11	680	9.5%	1.48 [0.72; 3	3.02]			-		
Forde et al, 2017	22	921	11	680	9.5%	1.48 [0.72; 3	3.02]			-		
Chughtai et al, 2018	22	455	11	455	9.6%	2.00 [0.98; 4	4.08]				-	
Chughtai et al, 2018	22	455	11	455	9.6%	2.00 [0.98; 4	4.08]				-	
Chughtai et al, 2018	22	455	11	455	9.6%	2.00 [0.98; 4	4.08]				-	
Arcieri et al, 2023	0	44	1	44	0.5%	0.33 [0.01; 7	7.96]	1		•	100	
van et al, 2003	3	30	3	44	2.1%	1.47 [0.32; 6	6.78]		,	!	_	
Detollenaere et al, 2015	i 1	105	1	103	0.6%	0.98 [0.06; 1	5.47]		<u> </u>	-		
Plair et al, 2021	7	97	2	50	2.1%	1.80 [0.39; 8	3.36]					
McDermott et al, 2011	1	24	4	65	1.1%	0.68 [0.08; 5	5.76]		-	-	_	
Milani et al, 2020	7	52	7	52	5.1%	1.00 [0.38; 2	2.65]			-		
Total (95% CI)		6231		5381	100.0%	1.37 [1.10; <i>1</i>	1.71]			•		
Heterogeneity: Tau ² = 0; C	Chi ² = 21.4	18, df =	24 (P = 0).61); l ²	2 = 0%			0.01	0.1	1	10	100

Fig. 7. Meta-analysis forest map on comparing intraoperative adverse reactions of different surgical modalities.

meta-analysis results regarding success rates indicated that the surgical methods of uterine preservation and removal did not significantly affect the success rate, with a risk ratio (RR) of 1.00 [0.98; 1.03]. This suggests that the choice between preserving or not preserving the uterus during UP treatment does not result in a significant difference in success rates. However, there were some differences between the different surgical methods regarding surgical duration, intraoperative blood loss, and intraoperative and postoperative adverse reactions. Specifically, compared to the surgical approach of uterine preservation, uterine removal showed significantly higher values in terms of surgical duration and intraoperative blood loss. Previous studies have argued that keeping the uterus during surgery may help reduce the operation time [29, 52]. A review article noted that in the comparison of vaginal hysterectomy, the procedure of preserving the uterus is linked to shorter operation duration, reduced hospital stay, and less bleeding [53]. Additionally, the incidence of adverse reactions during surgery was notably higher with hysterectomy than with uterine preservation. However, regarding postoperative adverse reactions,

the meta-analysis results indicated that different surgical methods did not significantly affect postoperative adverse reactions.

Assessing the meta-analysis model, we thoroughly evaluated the publication bias and sensitivity. Our findings indicated that the meta-analysis was not influenced by publication bias, and the sensitivity analysis results were robust, confirming the reliability of the study outcomes. Overall, this meta-analysis offers valuable insights on comparing UP surgical approaches. Despite significant differences in some indicators among the various surgical methods, no noticeable differences were observed regarding the success rates. However, this study still has some limitations that must be considered and addressed in result interpretation and future study designs. The results of this study are based on published literature, which may introduce publication bias and may only cover some relevant studies, potentially leading to an incomplete assessment of the efficacy of different surgical methods. Different studies may use different definitions, criteria, and surgical techniques when comparing surgical methods, potentially resulting in methodologi-

Hongxiang	Chen,	et al.
-----------	-------	--------

Study	Experin Events	nental Total	Co Events	ontrol Total	Weight	Risk Ratio MH, Random, 95% 0	Risk Ratio Cl MH, Random, 95% Cl
Thys et al, 2011	37	98	43	98	10.9%	0.86 [0.61; 1.21]	
Wang et al, 2022	32	69	33	48	11.2%	0.67 [0.49; 0.93]	
Yan et al, 2023	2	95	16	277	2.3%	0.36 [0.09; 1.56]	
Yan et al, 2023	9	111	16	277	5.6%	1.40 [0.64; 3.08]	
Ker et al, 2018	11	30	21	66	7.6%	1.15 [0.64; 2.07]	-
Bedford et al, 2013	0	160	1	104	0.5%	0.22 [0.01; 5.28]	•
Bedford et al, 2013	0	160	1	104	0.5%	0.22 [0.01; 5.28]	· · · · · · · · · · · · · · · · · · ·
Nager et al, 2019	0	87	7	88	0.7%	0.07 [0.00; 1.16]	
Campagna et al, 2022	5	58	2	78	1.9%	3.36 [0.68; 16.72]	
Campagna et al, 2022	5	58	2	78	1.9%	3.36 [0.68; 16.72]	
Pan et al, 2016	0	34	0	65	0.0%		
Yuan et al, 2021	94	260	39	130	11.3%	1.21 [0.89; 1.64]	<u></u>
Arcieri et al, 2023	1	44	4	44	1.2%	0.25 [0.03; 2.15]	
Carlin et al, 2023	22	96	14	96	7.4%	1.57 [0.86; 2.88]	+
Detollenaere et al, 2015	14	105	28	103	7.7%	0.49 [0.27; 0.88]	
Chou et al, 2021	12	16	30	66	10.2%	1.65 [1.12; 2.43]	
Plair et al, 2021	21	97	7	50	5.6%	1.55 [0.71; 3.39]	
McDermott et al, 2011	0	24	0	65	0.0%		
Mao et al, 2023	11	60	5	45	4.2%	1.65 [0.62; 4.41]	
Mao et al, 2023	11	60	5	45	4.2%	1.65 [0.62; 4.41]	
Mao et al, 2023	11	60	5	45	4.2%	1.65 [0.62; 4.41]	
Milani et al, 2020	3	52	1	52	1.1%	3.00 [0.32; 27.91]	
Total (95% CI)		1834		2024	100.0%	1.10 [0.83; 1.45]	
Heterogeneity: Tau ² = 0.10)93; Chi ² :	= 41.15	5, df = 19	(P < 0.	01); I ² = 5	54%	0.01 0.1 1 10 100

Fig. 8. Meta-analysis forest map of postoperative adverse reactions of different surgical methods.

Fig. 9. Potential publication bias. (A) Funnel Plot: X-axis represents the effect size (natural logarithm); Y-axis represents the standard error (SE) of the effect size; each point, uniform in size, represents an individual study; the funnel consists of three lines, with the vertical line indicating the position of the combined effect size on the X-axis and the two diagonal lines representing the 95% confidence intervals (CI). Visual inspection of whether included studies are symmetrically distributed around the combined effect size on the funnel plot helps identify publication bias—an asymmetric funnel plot suggests potential bias, while a symmetric distribution indicates no publication bias. (B) Galbraith Plot: X-axis measures the study size with the reciprocal of the standard error of the effect size; Y-axis represents the standardized effect size; each uniformly sized point signifies an individual study; three horizontal lines are present, with the central black line indicating the fixed-effect combined value, and the two outer lines representing its 95% CI; theoretically, if there is no heterogeneity or publication bias, approximately 5% of studies should fall outside the two 95% CI lines.

RR

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00 [0.98; 1.03]

1.00 [0.98; 1.03]

1.00 [0.98; 1.03]

1.00 [0.98; 1.03]

1.00 [0.97; 1.03]

1.00 [0.97; 1.03] 1.00 [0.98; 1.03]

[0.98; 1.02]

[0.98; 1.03]

[0.98; 1.03]

[0.97; 1.03]

[0.98; 1.03]

[0.98; 1.03]

[0.98; 1.03]

[0.98; 1.03]

[0.98: 1.03]

[0.98; 1.03]

[0.98; 1.02]

1.00 [0.98; 1.03]

1.00 [0.97; 1.03]

1.00 [0.98; 1.02]

1.00 [0.98; 1.03]

1.00 [0.97; 1.03]

1.00 [0.98; 1.03]

1.00 [0.97; 1.03]

1.00 [0.98; 1.03]

95%-CI P-value

Tau2

0.99 0.0026 0.0511 69%

0.95 0.0027 0.0518 69%

0.98 0.0026 0.0506 69%

0.95 0.0027 0.0523 69% 0.95 0.0027 0.0518 69%

0.95 0.0027 0.0518 69%

0.95 0.0028 0.0529 69%

0.98 0.0027 0.0519 69% 0.97 0.0027 0.0516 68%

0.93 0.0026 0.0510 69%

0.98 0.0027 0.0521 69%

0.85 0.0025 0.0498 69%

0.88 0.0025 0.0502 69%

0.88 0.0025 0.0502 69%

0.87 0.0025 0.0497 69%

0.86 0.0025 0.0496 69%

0.98 0.0026 0.0509 69% 0.98 0.0025 0.0502 69%

0.94 0.0026 0.0505 69%

0.88 0.0027 0.0518 69%

0.89 0.0027 0.0516 69%

0.99 0.0025 0.0499 68%

0.98 0.0026 0.0510 69%

0.98 0.0026 0.0505 69%

0.98 0.0026 0.0508 69%

0.98 0.0026 0.0513 69%

0.95 0.0024 0.0494 69%

0.91 0.0026 0.0506 69%

0.92 0.0023 0.0482 68%

0.92 0.0027 0.0520 69%

1.00 0.0025 0.0502 69% 0.93 0.0024 0.0486 68%

0.95 0.0026 0.0512 69%

0.97 0.0026 0.0508 69% 0.59 0.0014 0.0369 65%

0.96 0.0028 0.0530 69%

0.95 0.0028 0.0529 69%

0.85 0.0026 0.0509 69%

0.99 0.0028 0.0528 69%

0.95 0.0028 0.0528 69%

0.99 0.0027 0.0521 69%

0.98 0.0026 0.0507 69%

0.99 0.0026 0.0511 69%

0.91 0.0026 0.0514 69% 0.86 0.0026 0.0514 69%

0.81 0.0024 0.0485 69%

0.89 0.0025 0.0500 68%

0.91 0.0025 0.0503 69%

0.96 0.0027 0.0518 69%

0.92 0.0026 0.0509 69%

0.85 0.0026 0.0512 63%

0.73 0.0012 0.0347 63% 0.92 0.0026 0.0508 69%

0.87 0.0026 0.0506 69% 0.90 0.0026 0.0508 69%

0.94 0.0026 0.0509 69%

0.88 0.0025 0.0499 69%

0.95 0.0025 0.0504 69%

Tau

12

Risk Ratio

1.

Study

Omitting Thys et al, 2011 Omitting Zhu et al, 2021 Omitting Wang et al, 2022 Omitting Chang et al, 2023 Omitting Gracia et al, 2015 Omitting Gracia et al, 2015 Omitting Illiano et al, 2020 Omitting Yan et al, 2023 Omitting Yan et al, 2023 Omitting Sukur et al, 2020 Omitting Ker et al, 2018 Omitting Nager et al, 2021 Omitting Bedford et al, 2013 Omitting Bedford et al, 2013 Omitting Nager et al, 2019 Omitting Stanford et al, 2015 Omitting Stanford et al, 2015 Omitting Al-Badr et al, 2017 Omitting Romanzi et al, 2012 Omitting Rogers et al, 2022 Omitting Campagna et al, 2022 Omitting Campagna et al, 2022 Omitting Pan et al. 2016 Omitting Iz Omitting L Omitting H Omitting L Omitting D Omitting L Omitting G Omitting Y Omitting F Omitting F Omitting F Omitting C Omitting C Omitting C Omitting A Omitting v Omitting C Omitting D Omitting S Omitting C Omitting C Omitting P Omitting N Omitting H Omitting H Omitting N Omitting M Omitting M Omitting N Omitting E

Random effects model

Pan et al, 2016		1.00 [0.98; 1.02]
zett-Kay et al, 2022		1.00 [0.98; 1.03]
one et al, 2018		1.00 [0.98; 1.02]
laj-Yahya et al, 2020		1.00 [0.98; 1.03]
o et al, 2015		1.00 [0.98; 1.02]
Dietz et al, 2010		1.00 [0.98; 1.02]
i et al, 2020		1.00 [0.98; 1.03]
Gagyor et al. 2021		1.00 [0.97; 1.02]
/uan et al, 2021		1.01 [0.99; 1.03]
orde et al, 2017		1.00 [0.98; 1.03]
orde et al. 2017		1.00 [0.98; 1.03]
Forde et al, 2017		- 1.00 [0.98; 1.03]
Chughtai et al, 2018		1.00 [0.97; 1.03]
Chughtai et al, 2018	i	1.00 [0.98; 1.03]
Chughtai et al, 2018		1.00 [0.97; 1.03]
Arcieri et al, 2023		1.00 [0.97; 1.02]
an et al, 2003	÷	1.00 [0.98; 1.03]
Carlin et al, 2023		1.00 [0.98; 1.03]
Detollenaere et al, 2015		- 1.00 [0.98; 1.03]
Schultenetal.et al, 2019		- 1.00 [0.98; 1.03]
Chou et al, 2021		1.00 [0.98, 1.03]
Chou et al, 2021		1.00 [0.98; 1.03]
Plair et al, 2021		1.00 [0.98; 1.03]
AcDermott et al, 2011		1.00 [0.98; 1.03]
lusby et al, 2019		- 1.00 [0.98; 1.03]
lusby et al, 2019		1.00 [0.98; 1.02]
Aaoet al, 2023		1.00 [0.98; 1.03]
/lao et al, 2023		- 1.00 [0.98; 1.03]
/lao et al, 2023		1.00 [0.98; 1.03]
/lilani et al, 2020		1.00 [0.98; 1.03]
3owen et al, 2023		1.00 [0.98; 1.03]
effects model		1.00 [0.98; 1.03]

1

Fig. 10. Sensitivity analysis results.

cal heterogeneity that could affect the consistency and comparability of results. Although this study found that hysterectomy and uterine fixation showed similar performance in terms of surgical success rate and postoperative adverse events in the treatment of uterine prolapse, the interpretation of the results may be limited due to limitations. There was high data heterogeneity in the analysis of some results, which may be influenced by differences between studies and inconsistencies in data reporting, thus requiring cautious interpretation of the results. A literature search was conducted until October 2023 and may not include the latest research findings, potentially leading to an inadequate understanding of the latest developments in this field.

Conclusions

Regarding UP treatment, there is no obvious difference in the surgical success rate or postoperative adverse reactions between uterine removal surgery and uterine fixation surgery. However, uterine removal surgery tends to result in longer operation duration, increased blood loss, and higher occurrence of adverse reactions during surgery than uterine fixation surgery. Thus, when selecting a treatment method for UP, doctors and patients should meticulously assess these factors, carefully evaluate the pros and cons, and formulate a treatment plan tailored to the individual's specific circumstances.

Availability of Data and Materials

Data to support the findings of this study are available on reasonable request from the corresponding author.

Author Contributions

HXC and XMW conceived, designed, and performed the experiments, and wrote the initial draft. NK and SY analyzed and interpreted the data, and provided analytical tools. All authors revised the manuscript critically for important intellectual content. All authors read and approved the final manuscript. All authors have participated sufficiently in the work and agreed to be accountable for all aspects of the work.

Ethics Approval and Consent to Participate

Not applicable.

Acknowledgment

Not applicable.

Funding

This study was supported by the National Key Research and Development Program of China (No. 2021YFC2009100, 2021YFC2009105).

Conflict of Interest

The authors declare no conflict of interest.

Supplementary Material

Supplementary material associated with this article can be found, in the online version, at https://doi.org/10.62713/ai c.3385.

References

[1] Thanasa A, Thanasa E, Paraoulakis I, Kamaretsos E, Ziogas A, Kontogeorgis G, *et al.* Total uterine prolapse: a rare cause of chronic obstructive uropathy associated with renal dysfunction (a case report). The Pan African Medical Journal. 2023; 44: 57.

[2] Devkota HR, Sijali TR, Harris C, Ghimire DJ, Prata N, Bates MN. Bio-mechanical risk factors for uterine prolapse among women living in the hills of west Nepal: A casecontrol study. Women's Health (London, England). 2020; 16: 1745506519895175.

[3] Yao L, Li F, Wang D, Sheng S. Evaluation of acupuncture treatments of postpartum female pelvic floor dysfunction by four-dimensional transperineal pelvic floor ultrasound. Medicine. 2021; 100: e27236.

[4] Lang JH, Zhu L, Sun ZJ, Chen J. Estrogen levels and estrogen receptors in patients with stress urinary incontinence and pelvic organ prolapse. International Journal of Gynaecology and Obstetrics: the Official Organ of the International Federation of Gynaecology and Obstetrics. 2003; 80: 35–39.

[5] Doshani A, Teo REC, Mayne CJ, Tincello DG. Uterine prolapse. BMJ (Clinical Research Ed.). 2007; 335: 819–823.

[6] Du L. Comparison of effects of high uterosacral ligament suspension and transvaginal sacrospinous ligament fixation in treatment of uterine prolapse in patients of childbearing age. Medical Journal of Chinese People's Health. 2023; 34: 136–139. (In Chinese)

[7] Moon JR, Kondo N, Glymour MM, Subramanian SV. Widowhood and mortality: a meta-analysis. PloS One. 2011; 6: e23465.

[8] Zhang A, Chen S, Lin R. Combined use of total glucosides of paeony and hydroxychloroquine in primary Sjögren's syndrome: A systematic review. Immunity, Inflammation and Disease. 2023; 11: e1044.

[9] Thys SD, Coolen AL, Martens IR, Oosterbaan HP, Roovers JPWR, Mol BW, *et al.* A comparison of long-term outcome between Manchester Fothergill and vaginal hysterectomy as treatment for uterine descent. International Urogynecology Journal. 2011; 22: 1171–1178.

[10] Zhu H, Sun Y, Zheng X. A comparison of modified laparoscopic uterine suspension and vaginal hysterectomy with sacrospinous ligament fixation for treating pelvic organ prolapse. American Journal of Translational Research. 2021; 13: 5672–5678.

[11] Wang K, Shi L, Huang Z, Xu Y. Bilateral Sacrospinous Hysteropexy Versus Bilateral Sacrospinous Ligament Fixation with Vaginal Hysterectomy for Apical Uterovaginal Prolapse. International Neurourology Journal. 2022; 26: 239–247.

[12] Chang OH, Yao M, Ferrando CA, Paraiso MFR, Propst K. Changes in sexual function over 12 months after nativetissue vaginal pelvic organ prolapse surgery with and without hysterectomy. Sexual Medicine. 2023; 11: qfad006.

[13] Gracia M, Perelló M, Bataller E, Espuña M, Parellada M, Genís D, *et al.* Comparison between laparoscopic sacral hysteropexy and subtotal hysterectomy plus cervicopexy in pelvic organ prolapse: A pilot study. Neurourology and Urodynamics. 2015; 34: 654–658.

[14] Yan L, Lu S, Zhao C, Lei L, Liu L. Comparison of Different Laparoscopic Sacropexy Procedures for Advanced Uterine Prolapse: A Retrospective Analysis. Journal of Minimally Invasive Gynecology. 2023; 30: 300–307.

[15] Şükür YE, Dökmeci F, Çetinkaya ŞE, Seval MM. Comparison of patient reported outcomes, pelvic floor function and recurrence after laparoscopic sacrohysteropexy versus vaginal hysterectomy with McCall suspension for advanced uterine prolapse. European Journal of Obstetrics, Gynecology, and Reproductive Biology. 2020; 247: 127–131.

[16] Ker CR, Lin KL, Loo ZX, Juan YS, Long CY. Comparison of Uphold[™] Vaginal Mesh Procedure with Hysterectomy or Uterine Preservation for the Treatment of Pelvic Organ Prolapse. Scientific Reports. 2018; 8: 9438.

[17] Nager CW, Visco AG, Richter HE, Rardin CR, Komesu Y, Harvie HS, *et al.* Effect of sacrospinous hysteropexy with graft vs vaginal hysterectomy with uterosacral ligament suspension on treatment failure in women with uterovaginal prolapse: 5-year results of a randomized clinical trial. American Journal of Obstetrics and Gynecology. 2021; 225: 153.e1–153.e31.

[18] Bedford ND, Seman EI, O'Shea RT, Keirse MJNC. Effect of uterine preservation on outcome of laparoscopic uterosacral suspension. Journal of Minimally Invasive Gynecology. 2013; 20: 172–177.

[19] Nager CW, Visco AG, Richter HE, Rardin CR, Rogers RG, Harvie HS, *et al.* Effect of Vaginal Mesh Hysteropexy vs Vaginal Hysterectomy With Uterosacral Ligament Suspension on Treatment Failure in Women With Uterovaginal Prolapse: A Randomized Clinical Trial. JAMA. 2019; 322: 1054–1065.

[20] Stanford EJ, Moore RD, Roovers JPWR, VanDrie DM, Giudice TP, Lukban JC, *et al.* Elevate and Uterine Preservation: Two-Year Results. Female Pelvic Medicine & Reconstructive Surgery. 2015; 21: 205–210.

[21] Al-Badr A, Perveen K, Al-Shaikh G. Evaluation of Sacrospinous Hysteropexy vs. Uterosacral Suspension for the Treatment of Uterine Prolapse: A Retrospective Assessment. Lower Urinary Tract Symptoms. 2017; 9: 33–37.

[22] Romanzi LJ, Tyagi R. Hysteropexy compared to hysterectomy for uterine prolapse surgery: does durability differ? International Urogynecology Journal. 2012; 23: 625– 631. [23] Rogers RG, Meyer I, Smith AL, Ackenbom M, Barden L, Korbly N, *et al.* Improved body image after uterovaginal prolapse surgery with or without hysterectomy. International Urogynecology Journal. 2022; 33: 115–122.

[24] Campagna G, Vacca L, Panico G, Rumolo V, Caramazza D, Lombisani A, *et al.* Laparoscopic sacral hysteropexy versus laparoscopic sacral colpopexy plus supracervical hysterectomy in patients with pelvic organ prolapse. International Urogynecology Journal. 2022; 33: 359–368. [25] Pan K, Cao L, Ryan NA, Wang Y, Xu H. Laparoscopic sacral hysteropexy versus laparoscopic sacrocolpopexy with hysterectomy for pelvic organ prolapse. International Urogynecology Journal. 2016; 27: 93–101.

[26] Izett-Kay ML, Rahmanou P, Cartwright RJ, Price N, Jackson SR. Laparoscopic sacrohysteropexy versus vaginal hysterectomy and apical suspension: 7-year follow-up of a randomized controlled trial. International Urogynecology Journal. 2022; 33: 1957–1965.

[27] Lone F, Curnow T, Thomas SA. Laparoscopic sacrohysteropexy versus vaginal hysterectomy for uterovaginal prolapse using validated questionnaires: 2-year prospective study. International Urogynecology Journal. 2018; 29: 71– 79.

[28] Haj-Yahya R, Chill HH, Levin G, Reuveni-Salzman A, Shveiky D. Laparoscopic Uterosacral Ligament Hysteropexy vs Total Vaginal Hysterectomy with Uterosacral Ligament Suspension for Anterior and Apical Prolapse: Surgical Outcome and Patient Satisfaction. Journal of Minimally Invasive Gynecology. 2020; 27: 88–93.

[29] Lo TS, Pue LB, Hung TH, Wu PY, Tan YL. Long-term outcome of native tissue reconstructive vaginal surgery for advanced pelvic organ prolapse at 86 months: Hysterectomy versus hysteropexy. The Journal of Obstetrics and Gynaecology Research. 2015; 41: 1099–1107.

[30] Dietz V, van der Vaart CH, van der Graaf Y, Heintz P, Schraffordt Koops SE. One-year follow-up after sacrospinous hysteropexy and vaginal hysterectomy for uterine descent: a randomized study. International Urogynecology Journal. 2010; 21: 209–216.

[31] Li PC, Ding DC. Outcomes of laparoscopic hysteropexy and supracervical hysterectomy plus cervicopexy: A retrospective study. Ci Ji Yi Xue Za Zhi = Tzu-chi Medical Journal. 2020; 32: 262–266.

[32] Gagyor D, Kalis V, Smazinka M, Rusavy Z, Pilka R, Ismail KM. Pelvic organ prolapse and uterine preservation: a cohort study (POP-UP study). BMC Women's Health. 2021; 21: 72.

[33] Yuan AS, Chang OH, Ferrando CA. Perioperative Adverse Events in Women Undergoing Vaginal Prolapse Repair With Uterine Preservation Versus Concurrent Hysterectomy: A Matched Cohort Study. Female Pelvic Medicine & Reconstructive Surgery. 2021; 27: 621–626.

[34] Forde JC, Chughtai B, Anger JT, Mao J, Sedrakyan A. Role of concurrent vaginal hysterectomy in the outcomes of mesh-based vaginal pelvic organ prolapse surgery. International Urogynecology Journal. 2017; 28: 1183–1195. [35] Chughtai B, Thomas D, Mao J, Asfaw T, Sedrakyan A. Role of hysterectomy at the time of native pelvic organ prolapse (POP) repair. Journal of Gynecologic Surgery. 2018; 1: 37.

[36] Arcieri M, Morlacco A, Montebelli F, Mancini M, Soligo M, Restaino S, *et al.* Sacrocolpopexy after sub-total hysterectomy vs. sacral hysteropexy for advanced urogenital prolapse: A propensity-matched study. International Journal of Gynaecology and Obstetrics: the Official Organ of the International Federation of Gynaecology and Obstetrics. 2023; 163: 847–853.

[37] Illiano E, Giannitsas K, Costantini E. Comparison between laparoscopic sacrocolpopexy with hysterectomy and hysteropexy in advanced urogenital prolapse. International Urogynecology Journal. 2020; 31: 2069–2074.

[38] van Brummen HJ, van de Pol G, Aalders CIM, Heintz APM, van der Vaart CH. Sacrospinous hysteropexy compared to vaginal hysterectomy as primary surgical treatment for a descensus uteri: effects on urinary symptoms. International Urogynecology Journal and Pelvic Floor Dysfunction. 2003; 14: 350–355; discussion 355.

[39] Carlin GL, Lange S, Ziegler C, Heinzl F, Bodner-Adler B. Sacrospinous Hysteropexy Versus Prolapse Hysterectomy with Apical Fixation: A Retrospective Comparison over an 18 Year Period. Journal of Clinical Medicine. 2023; 12: 2176.

[40] Detollenaere RJ, den Boon J, Stekelenburg J, IntHout J, Vierhout ME, Kluivers KB, *et al.* Sacrospinous hysteropexy versus vaginal hysterectomy with suspension of the uterosacral ligaments in women with uterine prolapse stage 2 or higher: multicentre randomised non-inferiority trial. BMJ (Clinical Research Ed.). 2015; 351: h3717.

[41] Schulten SFM, Detollenaere RJ, Stekelenburg J, IntHout J, Kluivers KB, van Eijndhoven HWF. Sacrospinous hysteropexy versus vaginal hysterectomy with uterosacral ligament suspension in women with uterine prolapse stage 2 or higher: observational follow-up of a multicentre randomised trial. BMJ (Clinical Research Ed.). 2019; 366: 15149.

[42] Chou YM, Chuang FC, Kung FT, Yang TH, Wu LY, Huang KH. Sacrospinous ligament fixation with uterine preservation reduces the risk of anatomical recurrence in pelvic organ prolapse. Lower Urinary Tract Symptoms. 2021; 13: 249–256.

[43] Plair A, Dutta R, Overholt TL, Matthews C. Short-term outcomes of sacrospinous hysteropexy through an anterior approach. International Urogynecology Journal. 2021; 32: 1555–1563.

[44] McDermott CD, Terry CL, Woodman PJ, Hale DS. Surgical outcomes following total Prolift: colpopexy versus hysteropexy. The Australian & New Zealand Journal of Obstetrics & Gynaecology. 2011; 51: 61–66.

[45] Husby KR, Larsen MD, Lose G, Klarskov N. Surgical treatment of primary uterine prolapse: a comparison of vaginal native tissue surgical techniques. International Urogynecology Journal. 2019; 30: 1887–1893.

[46] Mao M, Fu H, Wang Q, Bai J, Zhang Y, Guo R. The effect of hysteropreservation versus hysterectomy on the outcome of laparoscopic uterosacral suspension in pelvic organ prolapse surgery. Maturitas. 2023; 170: 58–63.

[47] Milani R, Manodoro S, Cola A, Bellante N, Palmieri S, Frigerio M. Transvaginal uterosacral ligament hysteropexy versus hysterectomy plus uterosacral ligament suspension: a matched cohort study. International Urogynecology Journal. 2020; 31: 1867–1872.

[48] Bowen ST, Moalli PA, Abramowitch SD, Luchristt DH, Meyer I, Rardin CR, *et al.* Vaginal morphology and position associated with prolapse recurrence after vaginal surgery: A secondary analysis of the DEMAND study. BJOG: an International Journal of Obstetrics and Gynaecology. 2023; 131: 267–277.

[49] van IJsselmuiden MN, Coolen ALWM, Detollenaere RJ, den Boon J, Bongers M, van de Pol G, *et al.* Hysteropexy in the treatment of uterine prolapse stage 2 or higher: a multicenter randomized controlled non-inferiority trial comparing laparoscopic sacrohysteropexy with vaginal sacrospinous hysteropexy (LAVA-trial, study protocol). BMC Women's Health. 2014; 14: 112.

[50] Wallwiener M, Taran FA, Rothmund R, Kasperkowiak A, Auwärter G, Ganz A, *et al.* Laparoscopic supracervical hysterectomy (LSH) versus total laparoscopic hysterectomy (TLH): an implementation study in 1,952 patients with an analysis of risk factors for conversion to laparotomy and complications, and of procedure-specific re-operations. Archives of Gynecology and Obstetrics. 2013; 288: 1329–1339.

[51] Brunes M, Johannesson U, Drca A, Bergman I, Söderberg M, Warnqvist A, *et al.* Recurrent surgery in uterine prolapse: A nationwide register study. Acta Obstetricia et Gynecologica Scandinavica. 2022; 101: 532–541.

[52] Ridgeway BM. Does prolapse equal hysterectomy? The role of uterine conservation in women with uterovaginal prolapse. American Journal of Obstetrics and Gynecology. 2015; 213: 802–809.

[53] Detollenaere RJ, den Boon J, Vierhout ME, van Eijndhoven HWF. Uterus preserving surgery versus vaginal hysterectomy in treatment of uterine descent: a systematic review. Nederlands Tijdschrift Voor Geneeskunde. 2011; 155: A3623.

Publisher's Note: *Annali Italiani di Chirurgia* stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.