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AIM: Spinal fractures, particularly vertebral compression fractures, pose a significant challenge in medical imaging due to their small-
scale nature and blurred boundaries in Computed Tomography (CT) scans. However, advanced deep learning models, such as the integra-
tion of the You Only Look Once (YOLO) V7 model with Efficient Layer Aggregation Networks (ELAN) and Max-Pooling Convolution
(MPConv) architectures, can substantially reduce the loss of small-scale information during computational processing, thus improving
detection accuracy. The purpose of this study is to develop an innovative deep learning approach for detecting spinal fractures, particu-
larly vertebral compression fractures, in CT images.
METHODS: We proposed a novel method to precisely identify spinal injury using the YOLO V7 model as a classifier. This model was
enhanced by integrating ELAN and MPConv architectures, which were influenced by the Receptive Field Learning and Aggregation
(RFLA) small object recognition framework. Standard normalization techniques were utilized to preprocess the CT images. The YOLO
V7model, integrated with ELAN andMPConv architectures, was trained using a dataset containing annotated spinal fractures. Addition-
ally, to mitigate boundary ambiguities in compressive fractures, a Theoretical Receptive Field (TRF) based on Gaussian distribution and
an Effective Receptive Field (ERF) were used to capture multi-scale features better. Furthermore, theWasserstein distance was employed
to optimize the model’s learning process. A total of 240 CT images from patients diagnosed with spinal fractures were included in this
study, sourced from Ningbo No.2 Hospital, ensuring a robust dataset for training the deep learning model.
RESULTS: Our method demonstrated superior performance over conventional object detection networks like YOLO V7 and YOLO V3.
Specifically, with a dataset of 200 pathological images and 40 normal spinal images, our method achieved a 3% increase in accuracy
compared to YOLO V7.
CONCLUSIONS: The proposed method offers an innovative and more effective approach for identifying vertebral compression fractures
in CT scans. These promising findings suggest the method’s potential for practical clinical applications, highlighting the significance
of deep learning in enhancing patient care and treatment in medical imaging. Future research should incorporate cross-validation and
independent validation and test sets to assess the model’s robustness and generalizability. Additionally, exploring other deep learning
models andmethods could further enhance detection accuracy and reliability, contributing to the development of more effective diagnostic
tools in medical imaging.
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Introduction

The increasing ratio of traumatic diseases in our mod-
ern society is becoming more apparent. Severe neuro-
logic deficits resulting from injuries, such as intramedullary
hematoma and spinal cord contusion with associated
edema, can be discerned through various imaging modal-
ities. Computed Tomography (CT) is particularly effec-
tive in detecting spinal fractures and bony abnormalities
due to its high-resolution imaging capabilities. CT can ac-
curately capture physiological and morphological changes,
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including swelling and asymmetry, by producing detailed
cross-sectional images of bony structures. Moreover, CT is
highly effective in confirming damages incurred from trau-
matic spinal injuries, making it crucial for identifying spinal
fractures and assessing their severity. Consequently, accu-
rate diagnosis becomes vital for managing lesions on bony
tissue and planning treatment, especially when there exists
ambiguity in diagnostic evaluations.

The concept of automatically recognizing injuries on CT
images has emerged as a critical research area in medi-
cal imaging due to its potential to alleviate workload of
healthcare professionals considerably. Object detection in
medical imaging involves employing computer algorithms
to identify and locate specific objects or structures within
medical images, such as radiographs and CT scans. This
technology can significantly boost the efficiency and preci-
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sion of medical diagnoses and treatment planning. A ma-
jor application of object detection in medical imaging is the
detection of abnormalities or lesions within the body. For
instance, object detection algorithms can identify tumors in
CT or magnetic resonance imaging (MRI) images, assisting
in cancer diagnosis [1, 2]. Similarly, these techniques can
identify other abnormalities, such as fractures or anomalies
in the heart or vascular system [3, 4]. The capability to auto-
matically detect these abnormalities can reduce the reliance
on radiologists’ manual image interpretation, thereby en-
hancing the pace and accuracy of diagnoses [5]. Moreover,
object detection algorithms can be used in monitoring dis-
ease progression and treatment response by tracking alter-
ations in the size and shape of abnormalities over time [6,
7]. Another significant application of object detection is the
automatic segmentation of organs and tissues. This process
is helpful for activities like assessing organ size and vol-
ume, which is crucial for planning treatment andmonitoring
disease progression [8]. Object detection, for instance, can
facilitate the measurement of a tumor’s size to decide the
appropriate treatment plan [9] or monitor size changes dur-
ing chemotherapy to assess treatment response [10]. Fur-
thermore, object detection can automatically label various
structures in medical images, thereby enhancing the accu-
racy and efficiency of manual image annotation [11, 12].
One considerable challenge in object detection in medical
imaging is the high variability in the appearance and shape
of the objects of interest. For instance, tumors can differ
significantly in size, shape, and intensity within an image,
making it difficult for algorithms to detect them accurately
[13]. Likewise, other abnormalities, such as fractures, may
present with complex and variable shapes, rendering them
challenging to detect and segment [14]. To address this
obstacle, researchers have designed algorithms specifically
for medical imaging, including deep learning-based meth-
ods capable of recognizing patterns within medical images
[15, 16]. These methods often incorporate convolutional
neural networks (CNNs), which have succeeded in various
object detection tasks across different domains [17, 18].
Another challenge in object detection in medical imaging
is the limited availability of annotated data for algorithm
training. Medical images often contain patient informa-
tion, making it challenging to retrieve large dataset required
for training and evaluating object detection algorithms [19].
To address this problem, researchers have devised methods
for synthesizing annotated data, such as utilizing computer
simulations or generating synthetic images with deep learn-
ing techniques [20, 21]. These methodologies help create
extensive datasets of annotated images, which are helpful
for training and evaluating object detection algorithms.
Despite various challenges, object detection in medical
imaging holds substantial potential to enhance the accu-
racy of medical diagnosis and the efficiency of treatment
planning. Besides the aforementioned applications, object
detection can be used in other areas of medical imaging,

such as image registration [22, 23], image-guided surgery
[24, 25], and radiation therapy planning [26, 27]. Creating
more precise and resilient object detection algorithms will
be crucial in fully realizing the potential of this technology
in medical imaging.
Several directions for future research in object detection for
medical imaging are emerging. One crucial area is the de-
velopment of algorithms explicitly designed for the unique
characteristics of medical images. Another promising di-
rection is the integration of object detection with other med-
ical imaging technologies. For example, combining ob-
ject detection with image registration algorithms could en-
able accurate alignment of images from different modali-
ties or time points, facilitating more precise measurement
and tracking of abnormalities [28, 29]. Furthermore, object
detection could improve image-guided surgery systems by
providing real-time guidance and localization during pro-
cedures [30]. Alongside these technical challenges, regu-
latory and ethical considerations are crucial for object de-
tection in medical imaging. The accuracy and reliability
of these algorithms will need to undergo stringent valida-
tion before they can be applied clinically [31]. Furthermore,
measures must be taken to ensure that these algorithms do
not discriminate against specific patient groups [32].
In conclusion, object detection in medical imaging has the
potential to substantially improve the accuracy and effi-
ciency of medical diagnosis and treatment planning. Ongo-
ing research in this field addresses the challenges of vari-
ability in object appearance and the limited availability of
annotated data while also exploring the integration of object
detection with other medical imaging technologies. Creat-
ing more accurate and robust object detection algorithms
will be pivotal for fully harnessing this technology’s poten-
tial in medical imaging.
This manuscript primarily focuses on vertebral compres-
sion fractures, a prevalent type of spinal fracture, and ex-
plores techniques for their automatic recognition. Addition-
ally, we examine various applications of object detection in
medical imaging, the current state of the field, future re-
search trajectories, and the challenges that may arise.

Materials and Methods
Conventional object detection models, such as Single Shot
MultiBox Detector (SSD), Faster Region-based Convolu-
tional Neural Network (R-CNN), and You Only Look Once
(YOLO) V2, have been effectively applied as advanced
classifiers in detecting spinal injuries, brain tumors, and
retinal lesions. However, compressive, bursting, shearing,
and torsional tension injuries in spinal trauma, as repre-
sented in CT images, display characteristics such as small
targets, blurry features, and indistinct bounding box bound-
aries. Consequently, these unique features often lead to tra-
ditional object detection models demonstrating suboptimal
performance in identifying these spinal injuries. Over re-
cent years, there have been considerable progress and mod-
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Fig. 1. Architectural overview of YOLO V7 model, the ELAN structure, and MP dimensionality reduction components. (All im-
ages in theMaterials andMethods section were created using the software “Lark” (V7.22.5, Lark Technologies Pte. Ltd., Beijing, China).)
YOLO, You Only Look Once; CBS, Convolution Batch Normalization and SiLU; ELAN, Efficient Layer Aggregation Networks; MP,
Max-Pooling; SPPCSPC, Spatial Pyramid Pooling Cross Stage Partial Connections; UP, Upsampling; BN, Batch Normalization; SiLU,
Sigmoid Linear Unit.

Fig. 2. Detailed illustration of the ELAN structure within the
YOLO V7 model.

ifications in the structures of deep learning networks. They
have evolved from traditional encoder-decoder designs to
highly intricate architectures, giving rise to novel models
like Transformer, Attention, and Shuffle. In object detec-
tion tasks, advancements like soft labels, auxiliary training,
and Distance Intersection over Union (DIOU) have been
integrated into these new models. Meanwhile, detecting

small objects has become a focus in of deep-learning object
recognition. Adjustments in the network, bounding box de-
sign, and similarity calculation have been optimized to en-
hance the recognition performance for small objects. Con-
sequently, this study proposes a targeted method for iden-
tifying spinal fractures based on the latest YOLO V7 [33]
and the Receptive Field Learning and Aggregation (RFLA)
framework for small object recognition. Additionally, we
compared our model with two conventional object recogni-
tion networks, YOLO V7 and YOLO V3 [34].
This study proposes a method for detecting spinal injuries
by leveraging the YOLO V7 network architecture. To ad-
dress the specific characteristics of spinal injuries in im-
ages, such as small targets, blurred edges, and the complex-
ity of accurately determining the bounding box boundaries,
this method integrates the Gaussian Receptive Field-based
Label Assignment from the RFLA framework for small tar-
get detection. It uses theWasserstein distance [35] to tweak
the model structure. These adjustments help optimize the
model’s extraction performance.
A total of 240 CT images from patients diagnosed with
spinal fractures were included in this study. This study was
approved by the Ethics Committee of NingboNo.2 Hospital
(No. PJ-NBEY-KJ-2022-08-15). This study utilized medi-
cal images and data strictly following the highest standards
of ethical conduct and patient confidentiality. We obtained
informed consent from all study subjects. Additionally, the
purpose and nature of the study design alongwith the poten-
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Fig. 3. Schematic presentation of the Max-Pooling Convolution (MPConv) structure within the YOLO V7 model.

tial risks and benefits associated with this study were thor-
oughly explained to the participants before obtaining their
consent.

Network Structure

We utilized YOLO V7, a state-of-the-art object detection
model recognized for its proficiency in detecting and clas-
sifying objects within images and videos. This model uses a
grid-based approach, segmenting an image into cells. Each
cell is responsible for determining whether it encompasses
an object and, if so, classifying it. Unlike other object de-
tection models that engage multiple CNNs, YOLO V7 re-
lies on a singular CNN to make predictions. This approach
enhances its speed and efficiency compared to other mod-
els, although it might sacrifice accuracy. The structure of
YOLO V7 is summarized in Fig. 1, with its primary im-
provement being the Efficient Layer Aggregation Networks
(ELAN) [36] structure and the Max-Pooling (MP) dimen-
sionality reduction components.
Typically, networks for most deep learning tasks are de-
signed for smaller samples with a 224 or 256 pixels width.
However, object detection tasks often deal with larger im-
ages and targets, requiring data from a broader range of
scales. Recently, the YOLO family has been tailored for
larger samples with a width exceeding 400 pixels. For in-
stance, the sample dataset for YOLO V7 includes images
with widths of 640 and 1280 pixels. Given that the dataset
in this study has dimensions of 1170 pixels × 2088 pixels,
YOLO V7 is a suitable choice for this dataset.
Moreover, conventional convolutional networks are often
designed for square input tensors, but in realistic scenarios
(such as in this study), images frequently possess unique
aspect ratios. To address this issue, the latest models,
like YOLO V5 and YOLO V7, propose a scaling adaptive
method. By allowing the original image to adapt by adding
the minimum number of black borders, the inference speed
experienced an enhancement of 37%.
The ELAN structure, a distinctive design feature of the
YOLO V7 object detection model, is illustrated in Fig. 2.
This structure balances efficiency and accuracy by employ-

ing a combination of convolutional layers, residual blocks,
and skip connections to construct a deep, potent network ca-
pable of accurately detecting and classifying objects in im-
ages and videos. A prominent characteristic of the ELAN
structure is its use of residual blocks. These blocks enable
the network to learn intricate features by adding the output
of one layer to the input of the subsequent layer rather than
replacing it. This functionality allows the network to aug-
ment its existing knowledge, incrementally enhancing its
performance. Another essential feature of the ELAN struc-
ture is the incorporation of skip connections, enabling the
network to bypass specific layers and directly extract infor-
mation from earlier layers. This helps the network better
comprehend the context of an image, leading to more accu-
rate predictions.

MP Dimensionality Reduction Components
Max-Pooling Convolution (MPConv) [37], a specific type
of convolutional layer utilized in the YOLO V7 object de-
tection model, is engineered for efficiency and efficacy,
making it suitable for real-time applications like video
surveillance and autonomous vehicles. Convolutional lay-
ers are a critical component of CNNs and are commonly
employed for tasks like image classification and object de-
tection. They apply a set of filters to an input image, sub-
sequently detecting patterns and features within that image.
TheMPConv structure presents a variation on conventional
convolutional layers, explicitly designed for enhanced ef-
ficiency and effectiveness in object detection applications.
This is achieved through a combination of pointwise (or 1
× 1) convolutions and depthwise convolutions. Pointwise
convolutions operate on individual pixels, while depthwise
convolutions process groups of pixels. By integrating these
two types of convolutions, the MPConv structure effec-
tively detects patterns and features in images, maintaining
greater efficiency and lighter computational weight com-
pared to traditional convolutional layers. The structure of
MPConv is depicted in Fig. 3.
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Loss Function

The YOLO V7 loss function consists of two main compo-
nents: classification loss and localization loss. The clas-
sification loss assesses the model’s accuracy in classifying
objects in an image, calculated by comparing the model’s
class predictions for each object to the ground truth anno-
tations. The localization loss evaluates the model’s preci-
sion in accurately locating objects in an image, calculated
by comparing the model’s predicted bounding boxes to the
ground truth annotations. The overall loss for theYOLOV7
model is calculated as a weighted sum of these two losses.
The model is trained to minimize this loss, aiming to make
predictions that closely match the ground truth annotations.
In this study, the weight of the localization loss is increased
since there is only one category.

Receptive Field Modelling for Spinal Injury Detection

Having detailed the network architecture in the preceding
section, we now focus on a novel optimization method for
detecting spinal injuries, which is a small object in medical
images with no explicit boundaries, making challenges for
precise bounding box definition. Traditional object detec-
tion methods use a “divide and conquer” principle, employ-
ing a Feature Pyramid Network (FPN) to detect objects of
different scales across various layers. While beneficial for
objects with clear edges, this strategy becomes less effec-
tive for our target object—spinal injuries.
To overcome this limitation, we propose to utilize the con-
cept of the Effective Receptive Field (ERF) [38] for label
assignment, which, unlike the traditional anchor-based and
anchor-free detectors, does not rely on heuristic anchor box
preset or scale grouping. The ERF is a subset of the total
input space that a feature in a CNN responds to, making
it particularly suitable for detecting objects with blurred or
non-existent boundaries.
We modeled the ERF using a Gaussian distribution to mea-
sure the degree of matching between the ERF and the
ground truth region. This approach aims to equate the effec-
tive region that a CNN feature effectively ‘sees’ or responds
to, with the statistical properties of a Gaussian distribution.
The Theoretical Receptive Field (TRF) [39], which repre-
sents the maximum potential receptive field that a feature in
a CNN includes, is calculated using the following formula:

trn = trn−1 + (kn − 1)

n−1∏
i=1

Si (1)

Where trn denotes the TRF of each point on the n-th convo-
lution layer, and kn and sn denote the kernel size and stride
of the convolution operation on the n-th layer.
Since the ERF and TRF share the same center points, but
the ERF covers only a part of the entire TRF, we approxi-

mate the radius of ERF as half the radius of the TRF. This
approximation is then used as the co-variance for a standard
2-D Gaussian distribution.
Hence, we modeled the range of ERF into a 2-D Gaussian
distribution Ne (µe, Σe) with:

µe =

[
xn

yn

]
,Σe =

[
er2n 0

0 er2n

]
(2)

Applying this method to our problem allows a more flexible
and potentially more accurate detection of spinal injuries.
By prioritizing the areas of the image that the network ‘sees’
most effectively, we can potentially improve the accuracy
of our model, especially in cases where the injury does not
have clear boundaries. Furthermore, this approach does not
rely on strict bounding box definition, offering greater flex-
ibility in detecting and classifying injuries of diverse sizes
and shapes. The implementation details and empirical ev-
idence indicating the advantages of our proposed method
are elaborated in the subsequent sections.

Application of Wasserstein Distance for Spinal Injury
Detection

Given the nature of spinal injury detection in CT scans,
where typically only a single injury is present in each scan,
the ground truth bounding box generally has little to no
overlap the majority of the prior boxes and points. This fea-
ture makes theWasserstein Distance particularly relevant to
our scenario.
We utilized theWasserstein Distance to measure the dispar-
ity between the distribution of the Effective Receptive Field
(ERF) and the ground truth (gt) region. Since we have pre-
viously modeled both entities as Gaussian distributions, we
can use the Wasserstein Distance to quantify their dissimi-
larity efficiently.
To understand this, Gaussian ERF represented as ne = Ne
(µe, Σe) and Gaussian gt as ng = Ng (µg, Σg). Using these
Gaussian distributions, the squared 2nd Wasserstein Dis-
tance can be simplified as:

W 2
2 (ne, ng) =∥∥∥∥∥
(
[xn, yn, ern, ern]

T
,

[
xg, yg,

wg

2
,
hg

2

]T)∥∥∥∥∥
2

2

(3)

Here, the Wasserstein Distance measures the discrepancy
between the two non-overlapping distributions of the ERF
and the gt region, providing a rational way to rank the prior-
ity of the different potential injury candidates for a specific
ground truth. This unique property renders the Wasserstein
Distance highly suited to our task, ensuring consistent re-
flection of the degree of match between all feature points
and a specific ground truth box. The RFLA small target
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Fig. 4. Receptive Field Learning and Aggregation (RFLA) small target detection architecture. HLA, Hierarchical Localization and
Attention; RFD, Receptive Field Dimension; IOU, Intersection over Union; ERF, Effective Receptive Field; gt, ground truth.

detection architecture, shown in Fig. 4, uses Gaussian Re-
ceptive Field-based Label Assignment andWasserstein dis-
tance.
Interestingly, the two-dimensional Gaussian distribution
derived from the bounding box can be intuitively under-
stood as representing the ‘influence’ of the ground truth
across the image, with the strongest influence at the center
of the bounding box and decreasing influence as we move
away. By reducing this distribution to one dimension along
the path of the spine, we effectively condense the problem
space while retaining the crucial characteristics essential for
injury detection.

YOLO V3
YOLO V3 is a typical object detection model designed to
identify and classify objects in images and videos. It works
by dividing an image into a grid of cells, with each cell re-
sponsible for predicting whether it contains an object and,
if so, assessing the class of the object. Unlike other mod-
els that use multiple CNNs, YOLO V3 uses a single CNN
to make these predictions. The CNN consists of differ-
ent layers, including convolutional layers, pooling layers,
and fully connected (FC) layers. The convolutional layers
are responsible for extracting features from the input im-
age by applying a set of filters to the image and detecting
patterns and features. The pooling layers down-sample the
feature maps produced by the convolutional layers, reduc-
ing the size and complexity. The FC layers make predic-
tions based on the features extracted by the convolutional

and pooling layers by applying a set of weights and biases
to the input features, producing a prediction for each cell in
the grid. Compared to YOLO V7, YOLO V3 uses a single
CNN for object detection predictions, while YOLOV7 uses
a multi-scale network with an MPConv structure. This fea-
ture makes it faster and more efficient than other models,
though it can result in lower accuracy.

Statistical Analysis

The model performance was assessed using three primary
metrics: Accuracy, Kappa coefficient, and Mean Intersec-
tion over Union (MIOU). These metrics collectively pro-
vide a comprehensive assessment of the model’s effective-
ness in identifying spinal fractures.
• Accuracy: Accuracy is calculated as the ratio of correctly
predicted instances to the total number of instances:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

• Kappa Coefficient: The Kappa coefficient measures the
agreement between the predicted and actual classifications,
adjusting for the possibility of the agreement occurring by
chance:

κ =
Po− Pe
1− Pe
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Where Po is the observed agreement and Pe is the expected
agreement.
•Mean Intersection over Union (MIOU): MIOU is a com-
mon evaluation metric for segmentation tasks, calculated
as the average of the Intersection over Union (IOU) for all
classes:

IOU =
Area of Overlap
Area of Union

MIOU =
1

N

N∑
i=1

IOUi

Where N is the number of classes.

Experiment
In this study, we collected 200 datasets of spinal compres-
sive fractures along with 40 images of healthy spines. The
original image had dimensions of approximately 1170 ×
2088 px. Typically, each image contained only one frac-
tured area, with the damaged bone having a pixel width of
approximately 240 px, and the fracture itself is about 40 px
wide. These characteristic regions occupy a smaller portion
of the overall image. Additionally, the features within the
fracture area are often fragmented, lacking distinct edges,
making it challenging for accurate annotation and identi-
fication. In our dataset, when assigning labels, we exclu-
sively outlined the core area of the bone injury.

Summary of Methods
We developed a novel method for detecting spinal fractures
in CT images using the YOLO V7 model, enhanced with
ELAN and MPConv architectures. The dataset consisted
of 240 CT images from Ningbo No.2 Hospital, including
200 pathological and 40 normal spinal images. We em-
ployed standard normalization techniques for preprocess-
ing. To address the challenges of small-scale and blurred
boundary fractures, we integrated Theoretical Receptive
Field (TRF) and Effective Receptive Field (ERF) frame-
works. Additionally, the Wasserstein distance was utilized
to optimize the model’s learning process. The performance
of our method was compared against conventional object
detection networks like YOLO V7 and YOLO V3.

Results
Fig. 5 depicts five distinct cases of spinal compression frac-
tures, analyzed using three models: YOLO V7, YOLO V3,
and our proposed method for fracture location identifica-
tion. The ground truth, determined by orthopedic experts,
serves as the benchmark. Table 1 provides the statistical
analysis of these methods, including accuracy, Kappa, and
MIOU. The results indicate that our method outperforms
the others, achieving the highest accuracy and precisely out-
lining the area of bone injury. YOLO V7 follows closely
with reasonable precision, while YOLO V3 occasionally

Table 1. Accuracy, Kappa, and MIOU statistics for YOLO
V7, YOLO V3, and our method.

Method Accuracy Kappa MIOU

Our method 93.10% 0.867 0.734
YOLO V7 89.50% 0.832 0.706
YOLO V3 82.20% 0.765 0.682

MIOU, Mean Intersection over Union.

misses detections and misinterprets scenarios.
Spinal compressive fractures occur when pressure causes a
section of the spinal bone to break. This condition is char-
acterized by distinct fracture lines visible on CT scans, thin-
ning of vertebral bone matter, and compression of fractures.
Imaging shows localized damage and fractures at the bone’s
edge. However, these features are difficult to distinguish,
and manual annotation often requires marking the entire
spinal bone, even though the target region is much smaller.
This complicates the accurate identification of spinal com-
pressive fractures.
To address this issue, YOLO V7 uses the ELAN and MP-
Conv structures, which preserve more information during
the network’s forward propagation, thereby better balanc-
ing large-scale and small-scale features. Additionally, to
mitigate the issue of ambiguous boundaries in compressive
fractures, this study employs a TRF based on Gaussian dis-
tribution to measure distance. Consequently, features at a
rectangle’s central location are given more weight. This
method amplifies the image features predominantly con-
centrated in the label’s center, enhancing recognition ac-
curacy and yielding results that closely match the ground
truth. Conversely, YOLO V3, rooted in the traditional En-
coder/Decoder architecture, may lose some small-scale in-
formation during propagation, potentially leading to mis-
judgments and missed detections.
In practical applications, we often rely on coarsely anno-
tated labels. The standard practice involves annotating the
entire cross-section of the spine. Fig. 6 depicts prediction
results from a dataset with coarse annotations, with accu-
racy, Kappa, and MIOU statistics for these methods (Ta-
ble 2). Notably, the injured area may only constitute a mi-
nor portion of the image. In such situations, conventional
methods like YOLO V7 and YOLO V3 compute the dis-
tance between the bounding box and the ground truth lin-
early. This causes the target detection network to learn the
complete cross-sectional features of the spine, identifying
all vertebrae. Conversely, our proposed method employs
TRF, assigning more weight to the central features when
measuring distance. This approach demonstrates enhanced
adaptability to datasets with coarse annotations by focus-
ing on the injury’s more crucial central features rather than
the entire cross-section of the spine. This nuanced approach
helps better distinguish between injured and non-injured re-
gions, thereby enhancing detection precision in real-world
scenarios.
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Fig. 5. Analysis of spinal compression fractures using YOLO V7, YOLO V3, and our proposed method. Comparison of spinal
fracture identification in five different cases using YOLO V7, YOLO V3, and our method (the red boxes represent the ground truth
locations of the compressive fractures, while the blue boxes indicate the results calculated or recognized by the various models).
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Fig. 6. Prediction results from a dataset with coarse annotations using YOLOV7, YOLOV3, and our proposed method. (The red
boxes represent the ground truth locations of the compressive fractures, while the blue boxes indicate the results calculated or recognized
by the various models.)

Table 2. Accuracy, Kappa, and MIOU statistics for YOLO
V7, YOLO V3, and our method in a coarsely annotated

dataset.
Method Accuracy Kappa MIOU

Our method 78.70% 0.714 0.652
YOLO V7 69.50% 0.636 0.579
YOLO V3 63.40% 0.572 0.534

Discussion
Identifying vertebral compression fracture areas in CT im-
ages utilizing intelligent algorithms has been a major chal-
lenge in medical imaging. Deep learning-based object de-
tection networks, presently among the most advanced al-
gorithms in this area, have been widely applied to various
medical imaging recognition tasks [40, 41]. Existing re-
search primarily utilizes the traditional Encoder-Decoder
architecture of fully convolutional networks [42]. How-
ever, these networks often grapple with information loss
during the encoding and decoding and managing multi-
scale information [36, 43]. In spinal injuries, CT images
frequently show discontinuities in bone matter, localized
changes in bone density, and irregular vertebral edge lines.
Due to their relatively small scale and obscure boundaries,
fracture areas in these images pose significant recognition

challenges. Traditional object detection methods often fail
to achieve high-precision detection in these scenarios [44].
In response to these challenges, we propose a novel ap-
proach for targeted spinal injury detection. This method
combines the state-of-the-art YOLO V7 network architec-
ture with the Gaussian Receptive Field framework. By pro-
viding a more precise definition of the distance between the
ground truth and prior boxes, this framework effectively ad-
dresses the issue of identifying small spinal injury targets
with blurred boundaries.
Our study included a dataset consisting of 200 pathological
images and 40 normal spinal images. To benchmark our
method, we used YOLO V7 and YOLO V3, two widely
used object detection networks. Our findings indicated that
the YOLO V7 network, featuring the ELAN and MPConv
frameworks, retained more small-scale information, thus
facilitating the detection of a larger number of targets and
improving the accuracy by 3%.
Furthermore, the method proposed in this study offers a
more precise definition of the distance between the ground
truth and prior boxes. Compared to the traditional YOLO
V7, it enhances accuracy by an additional 3%. These find-
ings facilitate improved detection and diagnosis of spinal
injuries, revealing the potential for deep learning-based ob-
ject detection networks in medical imaging applications.
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Future research can improve detection accuracy further and
enable the practical deployment of these models in clinical
settings.
Our findings align with previous research demonstrating
the advantages of advanced deep-learning models in med-
ical imaging tasks. For instance, Ronneberger et al. [45]
(2015) illustrated that integrating multi-scale feature ex-
traction techniques in U-Net significantly enhances the seg-
mentation of biomedical images, including small structures.
Similarly, Liao et al. [46] (2019) reported that using ad-
vanced architectures like ResNet improves the accuracy of
pulmonary nodule detection in chest CT scans. Our integra-
tion of the ELAN andMPConv frameworks with YOLOV7
further refines the detection of small-scale spinal fractures.
Despite our model’s promising performance on the train-
ing set, the absence of validation and test sets may lead to
several limitations: first, the model may overfit the train-
ing data, resulting in inadequate generalization. Second, the
lack of independent datasets to evaluate the model’s perfor-
mance might introduce bias in the results. The rationale for
not using validation and test sets is as follows: due to the
limited size of our dataset, we prioritized using all available
data for training to maximize the model’s learning capacity.
Additionally, this study is exploratory in nature, aiming to
verify the feasibility and potential performance of the new
method.
Despite these promising findings, our study has several lim-
itations. Firstly, although the dataset is robust, it remains
limited compared to the vast diversity of spinal fracture
cases in the real world. Secondly, our method primarily fo-
cuses on compressive fractures and may need to be adjusted
to effectively detect other types of spinal injuries. Lastly,
the computational complexity of the proposed model may
pose challenges for real-time clinical applications, neces-
sitating additional optimization. These limitations indicate
that future research should incorporate validation and test
sets to comprehensively evaluate the model’s performance
and verify its robustness and generalizability.
These findings pave the way for improved detection and di-
agnosis of spinal injuries, indicating the potential for deep
learning-based object detection networks in medical imag-
ing applications. Our method can be used as a reference for
future research to improve detection and accuracy and fa-
cilitate the practical deployment of such models in clinical
settings.

Conclusions
This study addresses a significant challenge in medical
imaging: identifying vertebral compression fractures in CT
scans using advanced algorithms. Our novel approach uses
the YOLO V7 architecture, combined with the Gaussian
Receptive Field framework, to enhance the detection ac-
curacy of small-scale spinal injuries with blurred bound-
aries. The effectiveness of this approach is validated using a
dataset of 200 pathological images and 40 normal spinal im-

ages. The findings demonstrate superior performance than
traditional object detection networks like YOLO V7 and
YOLO V3, achieving a 3% increase in accuracy compared
to YOLO V7. These promising results highlight the poten-
tial of our proposedmethod to improve the detection and di-
agnosis of vertebral compression fractures, paving the way
for further research and optimization for practical applica-
tion in clinical settings. The ultimate goal is to harness the
potential of deep learning to improve patient care and treat-
ment in medical imaging.
To further validate the generalizability and applicability
of our results, future research should incorporate several
key strategies. Firstly, cross-validation within the dataset
should be performed to assess the model’s robustness.
Secondly, the introduction of independent validation and
test sets is essential for comprehensive evaluation of the
model’s performance. These steps will help verify the
model’s robustness and generalizability, ensuring its prac-
tical utility in diverse clinical scenarios. Additionally, ex-
ploring other deep learning models and methods could fur-
ther enhance detection accuracy and reliability. By address-
ing these areas, subsequent studies can build upon our find-
ings and contribute to the development of more effective
diagnostic tools in medical imaging.
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