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AIM: Pressure ulcers are a prevalent health concern, often leading to severe complications if not diagnosed and treated promptly. This
study introduces the Squeeze-and-Excitation (SE)-Inception model, which integrates SE blocks into the Inception architecture, aiming
to enhance classification performance in medical image analysis.

METHODS: The performance of the SE-Inception model was compared to the Xception and Inception v4 models. Key performance
metrics such as accuracy, Area Under the Curve (AUC), recall, and Harmonic Mean of Precision and Recall (F1 score) were used to
evaluate its efficacy. Gradient-weighted Class Activation Mapping (Grad-CAM) heatmaps were utilized to provide interpretable visual
evidence consistent with expert annotations.

RESULTS: The SE-Inception model demonstrated superior accuracy (93%) and AUC (94%), with high recall and F1 scores, indicating
its efficacy in reducing false negatives and improving diagnostic reliability.

CONCLUSIONS: Despite the promising outcomes, the study acknowledges the limitation of dataset homogeneity and suggests further
validation with diverse datasets for enhanced scalability. The findings support the inclusion of the SE-Inception model in clinical settings

to improve diagnostic precision and patient care, particularly in nursing practices for effective pressure ulcer management.
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Introduction
Overview of Pressure Ulcers

Pressure ulcers, known for their extensive prevalence, ex-
hibit a marked variation across different countries [1]. In
the US alone, hospitalizations related to pressure sores
are estimated to be around 2.5 million annually [2]. A
2007 study recorded an average pressure ulcer prevalence
of 18.1% across European hospitals [3]. In 2019, global
data indicated 0.85 million decubitus cases with an age-
standardized prevalence of 11.3 per 100,000, an incidence
rate of 41.8 per 100,000, and years lived with disability
(YLD) of 1.7 per 100,000 [4]. These statistics underscore
the importance of understanding the global distribution of
pressure ulcers to devise effective preventive strategies.

Pressure ulcers are primarily caused by prolonged pres-
sure on the skin and are most prevalent among individuals
with mobility issues, such as those bedridden, wheelchair-
bound, or unable to shift their weight regularly [5,6]. Cer-

Correspondence to:  Feifei Zhang, Department of Gynecology,
Ningbo No.2 Hospital, 315199 Ningbo, Zhejiang, China (e-mail:
55562830@qq.com).

tain medical conditions, including stroke, spinal cord in-
jury, and malnutrition, can also trigger the onset of pressure
ulcers [7]. The severity of pressure ulcers can range from
superficial redness to deep wounds that penetrate muscle
and bone, necessitating treatments from simple reposition-
ing to complex dressing changes and debridement.

Preventive and curative nursing interventions for pressure
ulcers encompass diverse strategies to prevent skin break-
down and promote effective wound healing [8]. Common
approaches involve regular patient repositioning, maintain-
ing skin cleanliness and dryness, using specialized mat-
tresses and cushions to alleviate pressure, assessing the skin
for signs of redness or breakdown, and applying topical
creams and dressings [9]. The severity-based classifica-
tion of pressure ulcers assists in determining the most ef-
fective treatment plan [10]. Pressure ulcers are categorized
into four stages, each indicating increasing severity: Stage
I (superficial redness), Stage II (open wound with shallow
crater), Stage III (deeper ulcers extending into the fat layer),
and Stage IV (ulcers infiltrating muscle and bone with tis-
sue loss and exposed bone) [11].

Pressure ulcers pose a significant challenge in clinical set-
tings due to their high prevalence and severe complications
if not promptly addressed. Early detection and accurate di-
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agnosis are crucial in preventing the progression of pres-
sure ulcers and mitigating their impact on patient health.
However, these tasks are challenging due to the subtle early
signs that can be easily overlooked, leading to delayed treat-
ment and worsening of the condition. Moreover, the subjec-
tive nature of visual assessments by healthcare providers of-
ten results in high misdiagnosis rates, complicating patient
care. Therefore, there is a pressing need for more reliable
and automated detection methods that can assist clinicians
in identifying and diagnosing pressure ulcers accurately and
efficiently.

Evolution of Automated Medical Image Analysis

The field of automated medical image analysis, character-
ized by the use of computer algorithms to scrutinize medi-
cal images, is advancing rapidly [12]. This technology can
potentially transform medical diagnosis and treatment, en-
hancing accuracy and efficiency in disease detection and
diagnosis [13]. In decubitus ulcer recognition, automated
image analysis identifies skin abnormalities such as red-
ness, discoloration, and open wounds, quantifies the size
and shape of pressure ulcers, detects changes in tissue struc-
ture, and monitors disease progression [14,15]. The adop-
tion of this technology empowers healthcare professionals
to identify and diagnose pressure ulcers more quickly and
accurately, facilitating earlier treatment and preventing se-
vere health complications [16].

Medical Image Analysis Using Convolutional Neural
Network (CNN)

This study proposes an innovative framework that inte-
grates Squee-and-Excitation Network (SENet) with the
Inception model, resulting in a custom Squeeze-and-
Excitation (SE)-Inception model designed to improve the
limitations of existing technologies such as Inception v4
and Xception.

Convolutional Neural Network (CNN) have emerged as
powerful tools in the field of medical image analysis, of-
fering enhanced capabilities for object detection, classifi-
cation, and abnormality recognition in images, such as tu-
mors, lesions, and organs [17,18]. Numerous studies high-
light the effectiveness of Convolutional Neural Networks
(CNNgs), especially pre-trained models, in facilitating de-
tailed and accurate analysis of medical images [19]. The
diagnostic accuracy of deep learning in identifying patholo-
gies from chest radiograph data has been explored, demon-
strating its potential in automated and high-precision de-
tection [20]. The feasibility of employing fine-tuned, pre-
trained deep CNNs instead of training a deep CNN from
scratch for medical image analysis has also been substanti-
ated [21].

Advanced frameworks for Content-Based Medical Image
Retrieval (CBMIR) Systems have leveraged deep CNN
trained for medical image classification tasks [22]. The
concept of a single CNN trained for multiple segmenta-
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tion tasks has been explored, indicating potential efficiency
gains [23]. Novel methodologies have been suggested,
such as a two-stage task-oriented deep learning approach
for real-time detection of large-scale anatomical landmarks,
overcoming the challenges of limited medical data avail-
ability for network learning [24].

Innovative solutions, such as Shallow-Deep CNN (SD-
CNN), create virtual compositions from limited energy im-
ages for classification tasks [25]. Synthetic medical im-
ages generated through deep learning Generative Adversar-
ial Networks (GANs) have also shown promise, expand-
ing the horizons of what’s achievable in the field [26].
Attention-based CNN models, like Context-Aware Net-
work (CA-Net), offer more precise and interpretable medi-
cal image segmentation by simultaneously considering key
positional, channel, and scale parameters [27]. The use
of Three-Dimensional (3D) CNNs for medical image anal-
ysis has been gaining traction, with comprehensive stud-
ies detailing the mathematical aspects and necessary pre-
processing steps for medical images to be analyzed by 3D
CNNs [28].

While previous studies have laid the foundation by employ-
ing CNNs for medical image recognition, this study aimed
to refine the approach by integrating SENet with the Incep-
tion model to develop a system specifically optimized for
detecting and characterizing pressure ulcers. The novelty
of this research lies in the customized SE-Inception model,
which is hypothesized to surpass the capabilities of estab-
lished models like Inception v4 and Xception in recognizing
subtle variations in ulcer presentations.

Crucial to this study is the classification accuracy and the
interpretability of the results. By incorporating Gradient-
weighted Class Activation Mapping (Grad-CAM) technol-
ogy, the research introduces an advanced visual explana-
tory layer highlighting critical areas of interest in the im-
ages, providing clinicians with an intuitive heatmap of the
ulcerated regions. This feature is expected to enhance diag-
nostic precision by revealing the specific location and ex-
tent of tissue damage, thus allowing medical professionals
to understand the severity and progression of pressure ul-
cers rapidly.

Existing Technologies and their Limitations

Current technologies for pressure ulcer detection, including
visual inspection, manual palpation, ultrasound, infrared
thermography, and Magnetic Resonance Imaging (MRI),
have significant limitations. Visual inspection and manual
palpation are subjective and heavily rely on clinician ex-
perience, often resulting in inconsistent and delayed diag-
noses. Ultrasound, although applicable, requires special-
ized equipment and training and is limited by penetration
depth and resolution, making it impractical for routine use.
Infrared thermography is sensitive to environmental condi-
tions and patient movement, frequently leading to false pos-
itives. MRI, while providing detailed imaging, is costly and
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time-consuming, rendering it unsuitable for routine screen-
ing. These limitations highlight the need for more reli-
able, objective, and accessible diagnostic tools. The SE-
Inception model aims to address these gaps by leveraging
advanced deep learning techniques to enhance the accuracy
and reliability of pressure ulcer detection, promising better
patient outcomes and improved clinical management.

Materials and Methods
The Proposed System

To advance the diagnostic accuracy for pressure ulcers, our
research proposed an integrated system employing a sophis-
ticated ensemble of deep learning models enhanced by the
explanatory power of Grad-CAM visualizations. The ar-
chitecture of the proposed system unfolds through several
stages, beginning with data preparation and culminating in
the deployment of a diagnostic model, as illustrated in Fig.
1.

In this study, 1385 pressure ulcer images were gathered
from a local hospital, each with a resolution of 1024 x 1024
pixels, tailored to the input resolution of our deep learning
models. The dataset was categorized into four classes based
on the severity of the pressure ulcers-Class I (585 cases),
Class II (428 cases), Class III (232 cases), and Class IV
(140 cases). The original images, initially sized at 1024 x
1024 pixels, were resized during the pre-processing stage
to 225 x 225 pixels that better suited the model’s require-
ments, as reflected in the scales used in Fig. 2. The dataset
is methodically partitioned into distinct training and valida-
tion sets using an 80:20 ratio to ensure that the model has
access to sufficient data for learning while retaining enough
data for validation to reliably assess performance.

Given the imbalance in class distribution, majorly with
fewer instances in Class I1I and IV, data augmentation tech-
niques were extensively applied to the training set to artifi-
cially increase the number of samples and enhance the po-
tential of the model to generalize across all classes. Tech-
niques such as rotation, flipping, scaling, and adding Gaus-
sian noise were employed to create a more balanced and
diverse training dataset.

The pre-processing regimen involved a series of techniques
designed to render the images more conducive for analy-
sis. Adjustments to contrast and brightness are applied to
accentuate ulcer features. Normalization was used to stan-
dardize pixel values to a uniform range, ensuring algorith-
mic stability during the learning process. Image cleaning is
performed to remove irrelevant artifacts. Grayscale masks
were applied to highlight ulcerated areas, providing the neu-
ral network with a clarified target for feature extraction.
Additionally, Gaussian noise was introduced as a prophy-
lactic measure against overfitting, improving the capacity
of the model to generalize across unseen data.

To address the class imbalance within the dataset, extensive
data augmentation was applied during the pre-processing
stage. The augmentation techniques introduced various

transformations to diversify the dataset with a range of ul-
cer presentations. These transformations encompassed ro-
tations within a range of —15 to +15 degrees, horizontal
and vertical flipping to simulate different viewpoints, scal-
ing the images by a factor of 0.8 to 1.2, random transla-
tions shifting the images horizontally or vertically by up
to 10% of the image dimensions, intensity scaling to sim-
ulate changes in lighting conditions, adding small amounts
of Gaussian noise to make the model robust to noisy inputs,
and applying random elastic deformations to mimic real-
world distortions of the skin surface. These transformations
were implemented using the Imgaug and Albumentations
libraries, providing a comprehensive suite of data augmen-
tation tools. Applying these techniques significantly diver-
sified the training dataset, aiding the SE-Inception model in
better generalizing to unseen data. Fig. 2 depicts a compar-
ison between the original and pre-processed images.
During the training phase, the convolutional neural net-
works were configured and optimized. The Squeeze-
and-Excitation Network (SENet) was seamlessly integrated
with the spatially intelligent Inception model. Additionally,
Inception v4 and Xception models were included to enrich
the comparative analysis. These architectures were inde-
pendently trained on the pre-processed images, with their
hyperparameters optimized to achieve peak performance
specific to pressure ulcer recognition.

In the evaluation phase, metrics such as accuracy, precision,
recall, and the Harmonic Mean of Precision and Recall (F1
score) were computed to assess the diagnostic capabilities
of the models. Furthermore, the integration of Grad-CAM
technology generated heatmaps that highlighted critical re-
gions indicative of ulceration, enhancing the interpretabil-
ity of the model and providing medical practitioners with a
visual exposition of the pathology.

The Integration of Squeeze-and-Excitation Networks with
Inception

SENet, an architecture introduced by Hu et al. in 2018
[29], incorporates a recalibration mechanism to explicitly
model the interdependencies between channels of convo-
lutional features. SENet adjusts channel-wise feature re-
sponses adaptively, emphasizing informative features while
suppressing less useful ones, thereby enhancing the rep-
resentational power of the network. To complement the
strengths of SENet, the Inception model [30] was lever-
aged, culminating in the SE-Inception model, as depicted
in Fig. 3. The figure encapsulates the architectural synergy
between the SENet and the Inception model, culminating in
the SE-Inception model. The foundational Inception char-
acteristic feature is shown in the left segment of Fig. 3,
illustrating a direct mapping from the input image, denoted
by X, through the Inception module to produce an output
X.

Enhancing this configuration, SENet was integrated into the
model, initiating a novel recalibration of the convolutional
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Fig. 1. Schematic diagram of the proposed deep learning-based system for pressure ulcer diagnosis. Grad-CAM, Gradient-weighted
Class Activation Mapping; SENet, Squeeze-and-Excitation Network.

features output by the Inception module. This integration is
illustrated in the right segment of Fig. 3, where the output of
the Inception module, indicated as W x H x C (W, Width of
the feature map; H, Height of the feature map; C, Number of
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channels in the feature map), transforms the SENet mech-
anism. The SENet mechanism commences with a global
average pooling layer, reducing the spatial dimensions to
1 x 1 x C, thus condensing each channel into a single de-
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Fig. 2. Original and pre-processed pressure ulcer images.
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Fig. 3. Integration of Squeeze-and-Excitation (SE) blocks into the Inception model architecture. ReLU, Rectified Linear Unit; FC,
fully connected; W, Width of the feature map; H, Height of the feature map; C, Number of channels in the feature map.

scriptor. A fully connected (FC) layer captured the channel- where r represents the reduction ratio, a hyperparameter de-
wise dependencies following the pooling layer. The num-  termined empirically to balance complexity and efficacy.
ber of neurons in this layer is a fraction of C, denoted by C/r,
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Fig. 4. Illustration of the Grad-CAM process with Squeeze-and-Excitation (SE)-Inception model. ReLU, Rectified Linear Unit;

W, Weight; CNN, Convolutional Neural Network.

The Rectified Linear Unit (ReLU) activation function intro-
duced non-linearity into the network after the first FC layer,
enhancing the capability to model complex functions. A
second FC layer then elevated the neuron count back to the
original channel depth C, reconstructing the channel-wise
statistics. Following the second FC layer, the sigmoid ac-
tivation function generated a set of weights between 0 and
1 for each channel, enabling dynamic channel-wise feature
recalibration.

The culmination of this sequential operation was the scaling
step, where the learned channel-wise weights reweighted
the original feature maps produced by the inception module.
This process intricately modulated the significance of each
channel based on the content of the input image, achieving
the spatial recalibration characteristic of SENet.

Comparative Analysis of Adapted SE-Inception, Inception
v4, and Xception

To contextualize the efficacy and performance of our SE-
Inception model, established architectures such as Incep-
tion v4 [31] and Xception were employed for comparative
analysis. The Inception v4 model, an evolution of its prede-
cessors in the Inception lineage, was chosen for its sophis-
ticated and structured design conducive to extracting high-
level features from medical imagery. The Xception model,
representing a modification and extension of the Inception
architecture, replaces convolutional operations with depth-
wise separable convolutions, thus intensifying the ability of
the model to capture cross-channel correlations and feature
mappings [32].
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Inception v4 and Xception models were subjected to the
same pre-processing techniques as the SE-Inception model.
The models were trained using a robust dataset of pressure
ulcer images, which were split into designated training and
validation sets.

An extensive hyperparameter optimization process was un-
dertaken to ensure that the SE-Inception model was aptly
tuned for the specific task of pressure ulcer classifica-
tion. The hyperparameters considered included learning
rate, batch size, weight decay, and dropout rate. The tun-
ing process employed a combination of grid search and ran-
dom search methods to explore the hyperparameter space
effectively. The learning rate was varied between 0.0001
and 0.01, with a finer grid search performed within this
range to identify the optimal value that minimizes valida-
tion loss while ensuring stable convergence. Batch sizes
of 16, 32, and 64 were tested, focusing on achieving a bal-
ance between efficient learning and computational feasibil-
ity. Weight decay values ranging from 0.0001 to 0.001 were
examined to control overfitting by penalizing large weights
during training. Dropout rates between 0.2 and 0.5 were
tested to determine the optimal rate for regularization, aim-
ing to improve the ability of the model to generalize to un-
seen data.

The selection criteria for the final hyperparameters were
based on performance metrics obtained on the validation
set, including accuracy, precision, recall, and F1 score. The
combination of hyperparameters that yielded the highest F1
score on the validation set was chosen as the final configu-
ration for the SE-Inception model. This approach ensured
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that the model achieved high accuracy and maintained a bal-
ance between precision and recall, which is crucial for ef-
fective pressure ulcer detection. The learning rate was set
to initiate at 0.001, and the model underwent training for 20
epochs. The optimizer of choice was Adam, preferred for
its adaptive learning rate capabilities, and was employed
with betal and beta2 parameters set to 0.9 and 0.999, re-
spectively, following the recommendations of Kingma and
Ba in 2014 [33].

Integration of Grad-CAM Technology

In the subsequent phase of the research, critical to the
enhancement of the utility of the SE-Inception model,
Gradient-weighted Class Activation Mapping (Grad-CAM)
technology was integrated. Grad-CAM employs the gra-
dients of any target concept, flowing into the final convo-
lutional layer to produce a coarse localization map high-
lighting the important regions in the image for predicting
the concept [34]. By integrating Grad-CAM with the SE-
Inception model, the research aimed to achieve high clas-
sification accuracy and achieve a level of interpretability
quintessential for clinical diagnosis. Through this integra-
tion, the model produced heatmaps that were superimposed
on the original medical images, thereby providing clinicians
with an illustrative representation of the focus areas of the
model during the diagnostic process.

In Fig. 4, Grad-CAM starts with an input image processed
through the layers of a CNN, extracting complex patterns
and features. These patterns are then abstracted into a
convolutional feature map, labeled ‘A’. As these features
transition through the network, they activate various neu-
rons in the fully connected layers, leading to a decision.
By computing the weights for the importance of each neu-
ron (Weight (W)1 to Wm) through global average pooling
of the gradients, Grad-CAM provides a localization map
that underscores the pertinent regions in the image. The
subsequent step involves applying a ReLU function to the
weighted combination of feature maps, ensuring that only
the features positively influencing the target prediction are
visualized. This results in a heatmap that mirrors the size
of the convolutional feature maps, emphasizing the critical
areas for the prediction of CNN.

Results

The empirical evaluation of the proposed SE-Inception
model was meticulously performed and compared with the
established Xception and Inception v4 models. The results,
graphically depicted in Fig. 5a,b, indicate the progression
of model accuracy over training epochs and the compara-
tive analysis of performance metrics, respectively.

Fig. Saillustrates the training accuracy of the three models
as a function of epochs. The accuracy trajectory of the SE-
Inception model was observed to ascend in a fashion akin to
the Xception and Inception v4 models, yet it demonstrated
a distinct improvement in the stabilization of accuracy over

epochs. The gradual rise in accuracy for the SE-Inception
model highlighted its efficient learning capability and gen-
eralization over the training data. Notably, while the Xcep-
tion and Inception v4 models experienced slight fluctua-
tions in accuracy beyond the 10th epoch, the SE-Inception
model maintained a consistent improvement, showcasing
its robustness in learning from the dataset.

Following the training phase, the performances of the mod-
els were evaluated based on standard metrics: Accuracy,
Area Under the Curve (AUC), Recall, and F1 Score, as
presented in Fig. 5b. The SE-Inception model surpassed
the Xception and Inception v4 models in all evaluated met-
rics. The SE-Inception model exhibited the highest accu-
racy (93%), indicating its superior predictive performance
in classifying pressure ulcers from medical images. In
terms of AUC, a metric that reflects the ability of the model
to distinguish between classes, the SE-Inception model
marginally outperformed others with a score of 94%, re-
inforcing its efficacy in detection tasks.

The recall metric, which measures the capability of the
model to identify all relevant instances, was notably higher
for the SE-Inception model, suggesting its proficiency in
minimizing false negatives, a crucial aspect in medical di-
agnostics. Moreover, the F1 Score, a harmonic mean of
precision and recall, was the highest for the SE-Inception
model (93%), highlighting its balanced classification ca-
pacity, especially in a medical setting where false positives
and false negatives carry significant consequences.

The results cumulatively indicated that integrating
Squeeze-and-Excitation blocks within the Inception archi-
tecture significantly enhanced the ability of the model to
identify and characterize nuances in pressure ulcer images.
The superior performance of the SE-Inception model
was attributed to its capability to dynamically recalibrate
feature responses, emphasizing informative features while
suppressing less useful ones.

In this study, an examination of Grad-CAM heatmaps was
conducted to evaluate the performance of the SE-Inception
model across different stages of pressure ulcer progression.
The dataset comprised pressure ulcer images grouped into
four stages, from Stage I to Stage IV, each representing in-
creasing severity. For each original image, a heatmap was
generated using the Grad-CAM algorithm to indicate the
regions of the highest significance according to the clas-
sification of the SE-Inception model. Dermatology experts
were then enlisted to independently identify and distinguish
the affected areas on the original images. The expert analy-
sis served as a reference standard to assess the focus of the
accuracy of the model as depicted by the heatmaps.

As shown in Fig. 6, the alignment between the highlighted
regions in the Grad-CAM heatmaps and the annotations by
the experts was notably evident. The heatmaps accurately
reflected the gradation of severity, with the intensity and
spread of the highlighted regions increasing from Stage I
to Stage IV. The visual analysis underscored the capabil-
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Fig. 5. Comparative performance evaluation of deep learning models for pressure ulcer classification. (a) Training Accuracy of
Models. (b) Performance Evaluation Metrics. AUC, Area Under the Curve; F1 score, Harmonic Mean of Precision and Recall.
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Fig. 6. Visualization of pressure ulcer stages and corresponding Grad-CAM heatmaps.

ity of the SE-Inception model to classify pressure ulcers
accurately and to localize the affected tissue with remark-
able precision. For Stage I ulcers, the heatmap revealed
a concentrated focus on mild discolorations and initial tis-
sue damage. As the severity escalated to Stages II and 111,
the Grad-CAM visualizations expanded, corresponding to
increased tissue damage and ulceration. In Stage IV, the
heatmaps precisely delineated the extensive tissue necrosis
and deep ulceration, mirroring the clinical features of ad-
vanced pressure ulcers.

The concurrence between the Grad-CAM heatmaps and
expert annotations confirmed the robustness of the SE-
Inception model in identifying the salient features within
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the images. These findings suggest that integrating Grad-
CAM with the SE-Inception model enhances the classifica-
tion performance and provides a transparent diagnostic tool,
enabling clinicians to visualize and verify the areas identi-
fied by the model as indicative of pressure ulcers.

Discussion

The exploratory analysis of the SE-Inception model has
demonstrated a significant advancement in medical image
analysis, particularly in pressure ulcer classification. The
comparative study indicated that the SE-Inception model
excelled in key performance metrics over its predecessors,
the Xception and Inception v4 models. Achieving an accu-
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racy of 93% and an AUC of 94%, the SE-Inception model
exhibited a remarkable ability to effectively distinguish be-
tween classes of pressure ulcers [35].

One of the primary reasons for the superior performance of
the SE-Inception model is the inclusion of SE blocks, which
provide a mechanism for adaptively recalibrating channel-
wise feature responses by explicitly modelling interdepen-
dencies between channels. These blocks employ a self-
gating mechanism that dynamically learns to emphasize in-
formative features while suppressing less applicable ones
[29]. This mechanism is crucial in medical image analysis,
where distinctions between classes, such as different stages
of pressure ulcers, can be subtle and highly nuanced.
Moreover, the SE-Inception model benefits from depth-
wise separable convolutions, as utilized in the Xception ar-
chitecture, allowing for the separation of learning spatial hi-
erarchies and channel-wise correlations in image data. This
increases the ability of the model to abstract features from
medical images, where precision is paramount. In contrast
to traditional convolutional networks, which may not cap-
ture such complex features as effectively, the approach of
the SE-Inception model enables more sophisticated pattern
recognition, potentially reducing false positives and false
negatives in pressure ulcer classification.

Grad-CAM heatmaps are pivotal in providing visual expla-
nations for the predictions of the model, enhancing trust in
Al-assisted diagnostics among medical professionals [34].
This visual congruence with expert opinion reinforces con-
fidence in the diagnostic decisions of the model and serves
as a stepping stone toward explainable Al in healthcare.
The SE-Inception model, with its enhanced diagnostic ac-
curacy and robustness, holds significant potential for vari-
ous clinical applications. In hospital settings, it can be used
for early detection of pressure ulcers in patients with lim-
ited mobility, leading to timely interventions and prevent-
ing progression to severe stages, thus improving patient out-
comes and reducing costs. Telemedicine facilitates remote
diagnosis, particularly benefiting patients in underserved
areas by enabling prompt medical advice and intervention.
In long-term care facilities, the model assists nursing staff
by providing automated and accurate assessments, reducing
workload and human error, and leading to better preventive
care and enhanced quality of life for residents.

The improved diagnostic accuracy directly impacts patient
outcomes by reducing misdiagnosis, enhancing treatment
efficacy, and lowering healthcare costs. With higher ac-
curacy and recall rates, the SE-Inception model minimizes
the chances of false positives and false negatives, ensuring
appropriate and timely treatment for patients. Early and
accurate pressure ulcer allows for targeted treatments that
improve healing rates and reduce complications. The inte-
gration of Grad-CAM technology provides interpretability,
enhancing confidence in the Al system and aiding clinical
decision-making.

In summary, the superior performance and explainability
of the SE-Inception model make it a valuable tool in vari-
ous clinical settings, potentially leading to improved patient
outcomes, more efficient use of healthcare resources, and
enhanced overall quality of care.

Integrating the SE-Inception model into nursing practices
significantly advances pressure ulcer management. Nurses
are crucial in preventing and treating pressure ulcers, mak-
ing their involvement essential in applying new technolo-
gies. The SE-Inception model, with its high diagnostic ac-
curacy and interpretability through Grad-CAM heatmaps,
provides nurses with a valuable tool for early detection and
assessment of pressure ulcers.

Incorporating this technology into daily nursing care can
enhance the effectiveness of preventive measures, such as
patient repositioning and skin assessments, by identifying
at-risk areas before visible symptoms appear. It can also aid
in the accurate staging of existing ulcers, enabling nurses
to effectively tailor treatment plans and monitor healing
progress with greater precision.

To fully realize the benefits of the SE-Inception model,
nursing education programs should include training on in-
terpreting its outputs and integrating these insights into pa-
tient care plans. This approach promotes a collaborative
environment where technology and traditional nursing care
converge to improve patient outcomes in pressure ulcer
management.

The limitations of this study must be comprehensively ad-
dressed to understand the potential biases introduced by the
homogenous dataset and their impact on the generalizability
of the findings. Using a homogenous dataset limits the ex-
posure of the model to diverse patient demographics, poten-
tially leading to overfitting and biased performance when
applied to broader populations. This limitation may result
in reduced accuracy and reliability of the model in differ-
ent clinical settings, especially those involving varied eth-
nic and demographic groups.

However, our study is not without its limitations. The train-
ing and validation of the model were performed on a dataset
sourced from a homogenous population. Using a homoge-
nous dataset limits the exposure of the model to diverse pa-
tient demographics, potentially leading to overfitting and
biased performance when applied to broader populations.
To ensure the scalability and applicability of the model in
diverse clinical settings, it is imperative to train and validate
the model using data encompassing a wider demographic
and ethnic diversity [36].

Future research should incorporate more diverse datasets
that reflect a wider range of patient characteristics, includ-
ing different ages, ethnicities, and medical conditions to
mitigate these biases and enhance the generalizability of the
model. Additionally, implementing cross-validation tech-
niques and external validation with independent datasets
can offer a more robust assessment of the performance of
the model across various clinical environments.
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Future research should include multi-center studies involv-
ing diverse geographic locations and healthcare institu-
tions to validate the applicability of the SE-Inception model
across different clinical settings. This approach ensures that
the model performs well under various conditions and with
different patient populations, enhancing its robustness and
reliability. Integrating additional types of medical images,
such as CT, MRI, and ultrasound, can further validate the
versatility of the model and expand its application to other
medical imaging domains. Investigations into the inter-
pretability of the model by end-users and its integration into
clinical decision-support systems are necessary to realize its
full potential in a real-world healthcare environment [37].
Moreover, exploring the use of data augmentation tech-
niques and synthetic data generation can help address the
limitations of small or imbalanced datasets, improving the
performance and generalizability of the model. Evaluating
the real-world performance of the model through prospec-
tive clinical trials and its integration into existing clinical
workflows will provide valuable insights into its practical
utility and impact on patient outcomes.

Conclusions

In summary, the SE-Inception model performs better in the
classification of pressure ulcers, surpassing previous mod-
els such as Xception and Inception v4. Integrating Squeeze-
and-Excitation blocks has notably enhanced its ability to
focus on the most relevant features in medical images, a
critical aspect in the precise classification of medical con-
ditions. Grad-CAM heatmaps offer a transparent view into
the decision-making process of the model, enhancing its ac-
ceptance in clinical practice. However, additional studies
across more diverse datasets are essential to establish its
efficacy universally. The promising results of this study
indicate that the SE-Inception model represents a signifi-
cant step towards advanced, interpretable Al in healthcare,
with the potential to improve diagnostic accuracy and pa-
tient outcomes.
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