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AIM: Surgery (e.g., radical hysterectomy) combined with radiotherapy is the mainstay of treatment strategy for locally advanced cervical
cancer. However, the beneficial effects of adjuvant radiotherapy are frequently offset by late-onset toxicities, such as vaginal stenosis
(VS), which significantly impact patients’ quality of life. Although imaging techniques like computed tomography (CT) and magnetic
resonance imaging (MRI) are key for both surgical planning and radiotherapy targeting, their ability to predict VS risk before treatment
remains limited. This challenge underscores the need for accurate and interpretable predictive models specifically adapted to surgical
oncology contexts. This study aims to develop and validate an explainable deep learning framework, integrating Squeeze-and-Excitation
(SE) networks and Gradient-weighted Class Activation Mapping (Grad-CAM) visualization, for predicting radiotherapy-induced VS to
enable early, personalized intervention strategies.

METHODS: Pre-treatment (i.e., post-surgical, pre-radiotherapy) CT images of cervical cancer patients diagnosed between January 2017
and March 2022 were retrospectively collected. These patients underwent radical hysterectomy (or equivalent surgical resection) followed
by radiotherapy. Each patient was categorized as either positive or negative for subsequent VS development. Following normalization and
augmentation, we employed a Squeeze-and-Excitation enhanced Inception network (SE-Inception) to distinguish between high- and low-
risk cases. Model performance was compared to a conventional Random Forest and a deep learning baseline (ResNet50). Additionally,
Grad-CAM visualization was integrated to highlight discriminative image regions for enhanced interpretability and clinical validation.
RESULTS: Among the 140 patients included in the study, 51 developed VS after treatment, representing an incidence rate of 36.4%. The
SE-Inception model yielded superior performance (accuracy: 0.93; area under the receiver operating characteristic curve [AUC]: 0.95),
surpassing both ResNet50 (accuracy: 0.85; AUC: 0.90) and Random Forest (accuracy: 0.59; AUC: 0.65). Recall and F1 scores also
improved markedly, indicating robust sensitivity and precision. Calibration curves demonstrated excellent agreement between predicted
and observed risks, while decision curve analysis (DCA) consistently indicated superior net clinical benefits of the SE-Inception model
across various threshold probabilities compared to ResNet50 and Random Forest. Grad-CAM consistently localized to anatomically rel-
evant regions correlating with surgeon- and radiologist-identified risk sites, strengthening the clinical interpretability and trustworthiness
of the predictive framework.

CONCLUSIONS: Taking the surgical context into account, our SE-Inception framework demonstrated enhanced accuracy and inter-
pretability in identifying patients at risk for postoperative radiotherapy-induced VS. Through alignment with expert clinical assessments
and enabling early, personalized intervention strategies, this approach has the potential to improve outcomes and long-term quality of
life in cervical cancer survivors, supporting more proactive, surgery-informed treatment planning.
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proved screening methods have made headway, many pa-
tients still present with locally advanced disease, particu-
larly in resource-limited settings. In this scenario, radical
hysterectomy, or other appropriate surgical approaches, is
often employed as the primary treatment modality, poten-
tially followed by radiotherapy with or without chemother-
apy to mitigate recurrence risks [3,4]. Despite improving
local control and survival outcomes, adjuvant radiotherapy
can lead to late-onset, radiation-induced toxicities that may
arise months to years after treatment completion and pro-
foundly affect a patient’s long-term quality of life.

Introduction

Cervical cancer (CC) remains one of the most frequently
diagnosed gynecologic malignancies worldwide, exerting
a profound impact on women’s health, fertility, and psy-
chosocial well-being [1,2]. While prevention strategies
such as human papillomavirus (HPV) vaccination and im-
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Among these late sequelae, radiotherapy-induced vaginal
stenosis (VS) is especially significant. Pathologically, VS
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is characterized by fibrotic and proliferative tissue changes
in the vaginal canal—often accelerated by prior surgical
manipulation, subsequent tissue remodeling, and exposure
to ionizing radiation [5,6]. The resulting cascade involves
endothelial damage (injury to the inner lining of blood ves-
sels), impaired microcirculation, chronic inflammation, and
progressive fibrosis, which ultimately diminishes elastic-
ity and narrows the vaginal lumen. Clinically, the impli-
cations for patients can include dyspareunia (painful sexual
intercourse), difficulties during gynecologic examinations
(medical procedures to assess the female reproductive sys-
tem), sexual dysfunction, and compromised quality of life.
The prevalence of VS is substantial, with up to one-third of
cervical cancer survivors treated with pelvic surgery and ra-
diotherapy potentially developing some degree of clinically
relevant stenosis [7,8]. Despite its impact, the ability to
identify individuals at heightened risk for VS before begin-
ning radiotherapy remains limited. Conventional imaging
modalities—ultrasound, computed tomography (CT), mag-
netic resonance imaging (MRI), and nuclear imaging—Ilack
the sensitivity and specificity necessary for accurate risk
stratification [9]. Consequently, high-risk patients are not
always flagged early enough for preventive measures such
as surgical technique refinements (e.g., nerve-sparing hys-
terectomy), organ-preserving maneuvers, or the proactive
use of vaginal dilators.

The convergence of artificial intelligence (Al), machine
learning (ML), and deep learning has catalyzed advance-
ments in medical image analysis and outcome prediction
[10]. By leveraging large, high-dimensional data, these
methods can discern subtle imaging biomarkers beyond
the capacity of standard radiologic evaluations [11]. Deep
learning methods, particularly convolutional neural net-
works (CNNs), have shown great potential in analyzing
medical images. For instance, Squeeze-and-Excitation
(SE) networks can enhance the analysis by focusing on the
most important image features [12], while Inception mod-
ules capture multi-scale feature representations [13]. Merg-
ing these strengths in an “Squeeze-and-Excitation enhanced
Inception network (SE-Inception)” architecture can reveal
nuanced features—potentially those linked to post-surgical
tissue changes—in the CT scans of cervical cancer patients
at risk for VS.

Equally important, interpretability bolsters the clinical util-
ity of deep learning models. Gradient-weighted Class Ac-
tivation Mapping (Grad-CAM) offers heatmaps that visu-
alize the model’s focus, highlighting image regions most
influential to its predictions [14]. By mapping these high-
risk areas to post-surgical anatomy and potential radiation
damage zones, clinicians gain transparent insights into the
model’s decision-making. This fosters confidence in Al-
driven recommendations and facilitates early, individual-
ized interventions for preventing VS.

In this study, we present a deep learning-based system
aimed at predicting radiotherapy-induced VS in patients

who have undergone primary surgery (e.g., radical hys-
terectomy) for cervical cancer. Our approach combines
the SE-Inception architecture with Grad-CAM visualiza-
tion for both high performance and enhanced interpretabil-
ity. The ultimate goal is to identify patients at higher risk
pre-radiotherapy, thereby enabling proactive measures to
preserve vaginal function and improve long-term survivor-
ship outcomes.

Materials and Methods
The Proposed System

Our objective was to develop and validate a fully auto-
mated, interpretable deep learning system that predicts the
risk of VS prior to adjuvant radiotherapy, in patients who
had already undergone surgical resection for locally ad-
vanced cervical cancer. The pipeline encompasses data ac-
quisition, preprocessing, SE-Inception model training, and
Grad-CAM visualization.

Study Population

In this study, we retrospectively collected clinical baseline
data of cervical cancer patients diagnosed at The First Peo-
ple’s Hospital of Fuyang District between January 2017 and
March 2022. Data sources included both electronic medical
record systems and paper-based medical records to ensure
comprehensiveness and accuracy. The variables collected
primarily included patient age, tumor size (in centimeters),
tumor location, pathological type, clinical stage (based on
the International Federation of Gynecology and Obstetrics
[FIGO] staging system), tumor local metastasis (metasta-
sis to lymph nodes), radiotherapy dose, vaginal tumor inva-
sion, and follow-up information. Vaginal stenosis was diag-
nosed based on clinical symptoms, such as dyspareunia and
vaginal narrowing observed during gynecological exami-
nations, or radiological findings during follow-up imaging.
The diagnosis of VS was confirmed by a multidisciplinary
team comprising gynecologists and radiologists within 6—
12 months post-radiotherapy. All data were entered inde-
pendently by two researchers, with cross-checks performed
to minimize the possibility of human error.

Inclusion criteria adopted in this study are as follows: (i) Pa-
tients diagnosed with locally advanced cervical cancer who
underwent a surgical procedure such as radical hysterec-
tomy; (ii) Patients aged 1875 years; and (iii) Patients with
available pre-adjuvant-radiotherapy CT scans (performed
within three months after surgery).

Individuals who fit the following criteria were excluded
from this study: (i) Having a history of prior pelvic surgery
or radiation (unrelated to their primary cervical cancer di-
agnosis); (i1) Having undergone concurrent chemotherapy
for other malignancies; (iii) Having incomplete medical
records or CT scans of poor quality; and (iv) Having non-
VS severe toxicities that might confound assessment.
Non-VS severe toxicities refer to adverse events resulting
from radiotherapy that significantly impact patients’ quality
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of life but do not involve VS. These include, but are not lim-
ited to, severe rectal bleeding, fistula formation, bowel ob-
struction, or other Grade 3 or higher toxicities as defined by
the Common Terminology Criteria for Adverse Events (CT-
CAE). The exclusion of these cases ensures that the analy-
sis focuses exclusively on risk factors and outcomes associ-
ated with VS, without interference from other severe toxic-
ities that may involve overlapping anatomical or treatment-
related factors.

Data Collection and Preprocessing

We collected a dataset of 1200 pre-treatment CT images
from cervical cancer patients. Each CT image had an origi-
nal resolution of 1024 x 1024 pixels. Prior to modeling, we
resampled and resized these images according to the input
size required by our deep learning framework. The dataset
was split into training, validation, and test sets at a ratio of
60:20:20, ensuring balanced class representation.
Preprocessing involved standard intensity normalization
and contrast enhancement steps aimed at highlighting rele-
vant anatomical structures while reducing noise and irrele-
vant variations [10]. Additional preprocessing procedures
included the conversion to grayscale and the application
of Gaussian noise augmentation where appropriate. Data
augmentation techniques, including random rotations (£15
degrees), horizontal and vertical flips, and intensity shifts
(brightness adjustment range: 0.8 to 1.2), were employed to
simulate real-world variability in imaging conditions. We
carefully adjusted these parameters to avoid altering impor-
tant structures, such as the vaginal canal and nearby tis-
sues, ensuring that the anatomical details remained accu-
rate. The calibration process involved consultation with
clinical radiologists to retain inter-image spatial relation-
ships necessary for recognizing anatomic features relevant
to VS. Augmented images were further reviewed by a panel
of radiologists to confirm their anatomical accuracy and
clinical relevance. We utilized the Albumentations library
(version 1.3.1, Albumentations Team, San Francisco, CA,
USA)—a fast and flexible image augmentation toolkit—to
perform random rotations (£15°), horizontal and vertical
flips, random shifts (up to 10% of image size), and contrast
manipulations (brightness adjustment range: 0.8 to 1.2).
These augmentations were carefully calibrated to maintain
anatomical fidelity while increasing the effective size and
diversity of the training dataset [15]. Fig. 1 illustrates the
differences between the original and preprocessed CT im-
ages. The preprocessing steps, including intensity normal-
ization, contrast enhancement, and Gaussian noise augmen-
tation, aim at improving the visibility of key anatomical
structures while maintaining spatial fidelity. These adjust-
ments can be seen in the enhanced contrast and reduced
noise in the preprocessed image.

Fig. 2 illustrates the overall workflow of the study, span-
ning from patient selection performed in consideration of
inclusion and exclusion criteria, as well as data preprocess-
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ing, to the development of three predictive models Random
Forest and a deep learning baseline (ResNet50), and SE-
Inception). The Fig. 2 highlights how each stage of the
pipeline—data collection, augmentation, model training,
and Grad-CAM interpretability analysis—was designed to
ensure robust predictions of VS risk.

Model Comparison Framework

To rigorously evaluate the performance of the proposed
SE-Inception model, we compared it against two base-
lines: a Random Forest classifier and a standard deep CNN
model, ResNet50 [16]. For the Random Forest classifier,
we extracted handcrafted radiomic features from the pre-
processed CT images using the Pyradiomics library. A total
of 1000 features encompassing first-order statistics, texture
features, and shape descriptors were initially considered.
Feature selection was performed using Recursive Feature
Elimination with Cross-Validation (RFECV) to identify the
most predictive features, reducing the feature set to 50 op-
timal variables. Hyperparameter tuning for the Random
Forest model was conducted using grid search with 5-fold
cross-validation to optimize parameters such as the num-
ber of estimators, maximum depth, and minimum samples
split. The Random Forest model served as a conventional
machine learning baseline, while the ResNet50 architecture
represented a widely adopted deep learning benchmark in
medical image analysis. By contrasting SE-Inception’s per-
formance with these two models, we aimed to highlight the
added value of combining SE blocks with Inception mod-
ules.

We employed several performance metrics to comprehen-
sively assess and compare the models’ effectiveness:

(i) Accuracy: Measures the proportion of correctly clas-
sified instances out of the total instances, providing a gen-
eral sense of the model’s correctness.

(i) Areaunder the receiver operating characteristic curve
(AUC): Evaluates the model’s ability to distinguish be-
tween classes across various threshold settings, offering
insight into its discriminative power.

(iii) Recall (sensitivity): Assesses the model’s ability to
correctly identify positive instances; it is crucial for min-
imizing false negatives in clinical settings.

(iv) F1 score: Balances precision and recall, providing a
single metric that accounts for both false positives and
false negatives, which is especially useful in cases of
class imbalance.

(v) Receiver operating characteristic (ROC) curves:
Graphically represent the trade-off between the true pos-
itive rate and the false positive rate at different threshold
levels, aiding in the visual assessment of model perfor-
mance.

By utilizing these metrics, we ensured a comprehensive
evaluation of each model’s strengths and weaknesses, fa-
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Fig. 1. Comparison of original and preprocessed CT images for negative and positive patients. CT, computed tomography.

cilitating a thorough comparison between SE-Inception,
ResNet50, and Random Forest.

The Integration of Squeeze-and-Excitation Networks With
Inception

Rationale

Convolutional neural networks have achieved remarkable
success in medical image classification tasks, but further
improvements often come from innovative architectural en-
hancements. Two widely recognized techniques are the SE
blocks [12] and the Inception modules [13]. SE blocks fo-
cus on channel-wise feature recalibration, allowing the net-
work to adaptively emphasize the most informative chan-
nels. This mechanism enhances representational power and
has been shown to improve performance across various
CNN architectures. Inception modules, on the other hand,
capture multi-scale spatial information by applying paral-
lel filters of different sizes within the same layer, allowing
the model to learn both coarse- and fine-grained features
simultaneously [13].

Architecture

As shown in Fig. 3, the SE-Inception model refines the
conventional Inception architecture by seamlessly integrat-
ing SE blocks to enhance feature selection. Initially, the
input image is processed through a standard CNN back-

bone, which reduces spatial dimensions and extracts lower-
level features. Each Inception module then applies multi-
ple parallel convolutional filters of varying kernel sizes to
these feature maps, capturing information at different spa-
tial scales. The outputs of these parallel branches are con-
catenated, yielding a rich, multi-scale representation. At
this stage, the SE block is introduced to recalibrate channel-
wise feature responses. First, a global average pooling op-
eration condenses the spatial dimensions of the concate-
nated feature maps into a single vector, effectively summa-
rizing each feature channel’s global context. This global
descriptor is then passed through two fully connected (FC)
layers. The first FC layer reduces the dimensionality to a
bottleneck representation, which enables the model to effi-
ciently learn feature interdependencies. A rectified linear
unit (ReLU) activation follows to introduce nonlinearity.
The second FC layer restores the original channel dimen-
sion and employs a sigmoid activation to produce a set of
channel-wise weights between 0 and 1. By element-wise
multiplying the Inception output by these learned weights,
each channel’s contribution is adaptively scaled. Channels
that effectively capture discriminative patterns are priori-
tized, whereas those containing less relevant or redundant
information are downweighted. This channel recalibration
mechanism ensures that the downstream classifier focuses
on the most informative cues, thereby boosting the model’s
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Fig. 2. Overview of the study workflow: evaluation and interpretability analysis for predicting radiotherapy-induced vaginal
stenosis in cervical cancer patients. Overview of the study workflow, including patient inclusion, data preprocessing, model develop-
ment, training, evaluation, and interpretability analysis. This comprehensive pipeline highlights the data-driven approach used to predict
radiotherapy-induced VS in cervical cancer patients. VS, vaginal stenosis; SE-Inception, Squeeze-and-Excitation enhanced Inception
network; ROC, Receiver operating characteristic; ResNet50, Random Forest and a deep learning baseline; AUC, area under the receiver

operating characteristic curve.
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capacity to detect subtle biomarkers associated with VS
risk. The final output of the SE-Inception block is then
passed through subsequent layers, culminating in a binary
classification of VS risk.

X
Inception WxHXC
Global pooling | 1X1XC
FC 1x1xC/r
ReLU 1x1xC/r
FC 1X1xC
Sigmoid 1x1xC
Inception /

l

Fig. 3. Schematic representation of the SE-Inception network
architecture. FC, fully connected; ReLU, rectified linear unit; X,
represents the input feature map or image; W, the width of the input
feature map; H, the height of the input feature map; C, the number
of channels in the input feature map, representing the depth of
features.

Implementation Details

The network was implemented in PyTorch [17]. The ar-
chitecture began with a series of convolutional and max-
pooling layers to reduce the spatial dimensions, followed
by several SE-Inception blocks. The final representation
was fed into a global average pooling layer and a fully con-
nected classifier to produce a binary prediction: the risk of
developing VS (positive or negative). To prevent overfit-
ting, dropout layers were included after the FC layers, with
a dropout rate set to 0.5. While this value is higher than the
conventional range of 0.2—0.3 for CNN:ss, prior studies have
shown that higher dropout rates can be particularly effec-
tive for small, domain-specific datasets in medical imaging
tasks. For instance, dropout rates as high as 0.5 have been
demonstrated to significantly reduce overfitting in complex
architectures, particularly for tasks involving limited data

[18]. Similarly, regularization strategies, including higher
dropout rates, have been highlighted as critical for improv-
ing performance in medical image analysis tasks with small
datasets.

The specific hyperparameters used are as follows:

(i) Learning rate: 0.0001
(i1) Batch size: 32
(iii) Weight decay: 1le—®
(iv) Dropout rate: 0.5

We employed 5-fold cross-validation to ensure the robust-
ness and generalizability of the model. The dataset was di-
vided into five equal folds, where each fold was used once
as the validation set while the remaining four folds con-
stituted the training set. This process was repeated five
times, and the hyperparameter combinations that yielded
the best average performance across the folds were se-
lected for the final model training. Early stopping was im-
plemented based on validation loss with a patience of 10
epochs to prevent overfitting and ensure the selection of the
best-performing model checkpoint.

Integration of Grad-CAM Technology
Rationale for Interpretability

While deep learning models can achieve impressive clas-
sification performance, their inherent complexity often im-
pedes clinical adoption. Interpretability is crucial, as clin-
icians must understand the rationale behind a model’s pre-
diction to trust and effectively utilize its outputs. Grad-
CAM offers a solution by producing visual heatmaps that
indicate which regions of the input image most strongly
influenced the model’s decision [14]. Such interpretabil-
ity not only instills clinical confidence but also provides
insights into the model’s internal feature representations,
potentially leading to further improvements in diagnostic
pathways.

Grad-CAM Integration

We integrated Grad-CAM into the SE-Inception pipeline by
computing gradients of the target class score with respect to
the final convolutional layer’s feature maps. Specifically,
once the model generated a VS risk prediction, Grad-CAM
used the gradients of this output with respect to the feature
maps to produce a spatial localization map. This map was
then overlaid on the original CT image to highlight the re-
gions that were pivotal in the model’s prediction. To en-
sure the accuracy and clinical relevance of the Grad-CAM
visualizations, the highlighted regions were independently
reviewed and validated by a panel of three experienced ra-
diologists. This joint review process served as a reference
standard to assess whether the model correctly identified
anatomically significant areas associated with VS risk. Any
discrepancies between the model’s focus and the radiolo-
gists” assessments were discussed and addressed to refine
the interpretability of the model’s predictions. In practice,
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Table 1. Patient characteristics between the two groups.

Non-VS (n =89) VS (n=51) Statistical methods ZIt/x2 p-value
Age (years), median (P25, P75)  53.00 (44.00, 58.00)  51.50 (41.25,59.25)  Mann—Whitney U test —0.108 0.916
BMI (kg/m?), mean + SD 23.7+4.5 24.1 +£42 t-test 0.518 0.605
Tumor type Chi-square 0.460 0.498
Squamous cell carcinoma 69 (77.5) 42 (82.4)
Adenocarcinoma 20 (22.5) 9(17.6)
Tumor stage, n (%) Chi-square 7.752 0.021
I 29 (32.6) 6(11.8)
I 49 (55.1) 35 (68.6)
I 11 (12.4) 10 (19.6)
Tumor size Chi-square 1.235 0.267
>4 30(33.7) 22 (43.1)
<4 59 (66.3) 29 (56.9)
Local metastasis Chi-square 1.437 0.231
Yes 8(9.0) 8(15.7)
No 81 (91.0) 43 (84.3)
Vaginal tumor invasion Chi-square 5.213 0.022
Yes 66 (74.2) 46 (90.2)
No 23 (25.8) 5(9.8)
Intracavitary brachytherapy Chi-square 10.300 0.001
Yes 36 (40.4) 35 (68.6)
No 53 (59.6) 16 (31.4)
Treatment duration Chi-square 10.300 0.001
>45 days 36 (40.4) 35 (68.6)
<45 days 53 (59.6) 16 (31.4)

BMI, body mass index; VS, vaginal stenosis; SD, standard deviation.

the Grad-CAM procedure was applied post hoc to images
in the validation and test sets, offering clinicians and re-
searchers interpretable model outputs.

Clinical Utility

By revealing the spatial focus of the SE-Inception model,
Grad-CAM can guide clinicians to previously overlooked
anatomical areas that may predispose to VS. The resulting
heatmaps serve as a valuable tool for hypothesis genera-
tion and can potentially inform more targeted interventions.
For instance, if consistent patterns of radiotherapy-induced
damage are localized in specific vaginal sub-regions, pro-
phylactic measures or modified radiation planning could be
considered to protect these vulnerable areas. The synergy
of high predictive performance and interpretability thus has
the potential to enhance clinical decision-making, improve
patient outcomes, and foster trust in Al-driven medical so-
lutions.

Calibration Curve and Decision Curve Analysis

Calibration curves were generated by plotting the predicted
probabilities of VS risk against the observed outcomes
to evaluate the agreement between predicted and actual
risks. The calibration performance was assessed using the
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Hosmer-Lemeshow goodness-of-fit test. Decision curve
analysis (DCA) was conducted to assess the net clinical
benefit of the SE-Inception model across a range of thresh-
old probabilities. This analysis quantifies the trade-offs be-
tween the true positive and false positive rates, helping clin-
icians evaluate the practical utility of the model in different
clinical scenarios.

Statistical Analysis

All statistical analyses were conducted using IBM SPSS
Statistics software (version 22.0, IBM Corp., Armonk,
NY, USA). Python packages (version 3.6, Python Software
Foundation, Wilmington, DE, USA) were used to generate
figures for data visualization. Categorical variables were
presented as frequencies and percentages, and analyzed via
the chi-square tests. Normality of all continuous variables
was initially assessed using the Kolmogorov-Smirnov test.
Normally distributed continuous variables were expressed
as mean = standard deviation (SD) and compared between
groups using the z-test. Non-normally distributed continu-
ous variables were expressed as median (IQR, interquartile
range) and analyzed using the Mann-Whitney U test. Sta-
tistical significance was defined as a two-tailed p-value <
0.05.
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Results
Patient Characteristics

A total of 140 patients who underwent surgery (e.g., radi-
cal hysterectomy) followed by definitive radiotherapy were
retrospectively analyzed. Table 1 summarizes the demo-
graphic and clinical characteristics of the study population,
comparing 89 patients who did not develop VS and 51 pa-
tients who did. In our study, the overall incidence of VS
was 36.4%.

Notably, no statistically significant differences were ob-
served between the two groups in terms of age, body mass
index (BMI), tumor type, tumor size, and local metasta-
sis. However, tumor stage, vaginal tumor invasion, intra-
cavitary brachytherapy and treatment duration showed sig-
nificant statistical differences. Patients who developed VS
were primarily categorized as tumor stages II and I1I, while
patients in stage I exhibited a relatively lower incidence of
VS. In this study, the total radiotherapy dose administered
across all included patients was similar, ranging from 45 to
50 Gy.

Comparison of Model Performance

Table 2 provides a quantitative performance compari-
son among the three evaluated models—Random Forest,
ResNet50, and the proposed SE-Inception architecture—
using accuracy, AUC, recall, and F1 score. These results
were derived from the test set, which was exclusively re-
served for evaluating the final performance of the models to
ensure an unbiased assessment of their generalizability and
effectiveness. As shown, the SE-Inception model achieved
a notably higher accuracy (0.93) and AUC (0.95, 95% CI:
0.92-0.97) relative to both the Random Forest (0.59 Ac-
curacy; 0.65 AUC, 95% CI: 0.60-0.70) and the ResNet50
baseline (0.85 Accuracy; 0.90 AUC, 95% CI: 0.87-0.93).
The 95% confidence intervals (Cls) for the AUC values
were calculated using a bootstrapping method with 1000
resamples from the test set. This non-parametric approach
ensures robust estimation of variability in the AUC met-
rics, particularly given the limited size of the test set. Clin-
ically, this improvement translates to fewer false negatives
and false positives, enabling more accurate identification of
high-risk patients who may benefit from preemptive inter-
ventions, such as vaginal dilator therapy or modified radio-
therapy planning.

The imaging data were divided into training, validation, and
test sets with the following parameters:

(1) Training set: 720 images (60% of the total dataset)
used to train the models.

(i) Validation set: 240 images (20% of the total dataset)
utilized for hyperparameter tuning and model selection.
(iii) Test set: 240 images (20% of the total dataset) re-

served for evaluating the final model performance.

This partitioning ensured that each subset maintained a bal-
anced representation of both positive and negative classes,
thereby providing a reliable assessment of the models’
generalizability and performance across different data seg-
ments.

To further demonstrate the robustness of our SE-Inception
model, we conducted an accuracy convergence analysis
during the training process. The SE-Inception model con-
sistently demonstrated faster convergence and greater sta-
bility, reaching peak accuracy by the 30th epoch and main-
taining it thereafter. In contrast, the Random Forest model
exhibited slower convergence with significant fluctuations,
while the ResNet50 baseline achieved moderate conver-
gence but did not surpass the SE-Inception model in final
accuracy. This convergence behavior underscores the SE-
Inception model’s superior ability to learn and generalize
from the training data efficiently.

The observed performance gap between the SE-Inception
and ResNet50 models, particularly in AUC (0.95 vs. 0.90),
can be attributed to the architectural enhancements intro-
duced by the SE-Inception model. The integration of SE
blocks within the Inception modules allows for more effec-
tive channel-wise feature recalibration, which enables the
network to emphasize more informative features while sup-
pressing irrelevant ones.

Table 2. Comparative performance metrics for Random
Forest, ResNet50, and SE-Inception models.

AUC (95% CI)  Recall
0.65 (0.60-0.70)  0.52 0.57
0.90 (0.87-0.93)  0.86 0.86
0.95(0.92-0.97)  0.96 0.94

Model Accuracy F1 score

Random Forest 0.59
ResNet50 0.85
SE-Inception 0.93

AUC, area under the receiver operating characteristic curve; CI,
confidence interval; SE-Inception, Squeeze-and-Excitation (SE)
enhanced Inception network; ResNet50, Random Forest and a deep

learning baseline.

Fig. 4 illustrates the ROC curves for the three models. The
SE-Inception model’s curve closely approaches the top-left
corner, signifying a superior true positive rate over a wide
range of false positive rates. In contrast, the ResNet50
model exhibits a lower, yet still robust, ROC curve. The
Random Forest model displays a more modest performance
with fewer turning points in its ROC curve, which is in-
dicative of its limited discriminative ability in this specific
application. Despite this, the Random Forest serves as a
valuable baseline, providing a reference point to demon-
strate the enhanced performance of the more complex SE-
Inception and ResNet50 models. The inclusion of the Ran-
dom Forest model underscores the effectiveness of deep
learning approaches in capturing intricate patterns within
the CT imaging data that simpler models may overlook.

In Fig. 5, the comparative distribution of true positives (TP),
false positives (FP), true negatives (TN), and false nega-
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Fig. 4. ROC curves demonstrating the performance of SE-Inception, ResNet50, and Random Forest models. AUC, area under the

receiver operating characteristic curve; ROC, receiver operating characteristic.

tives (FN) provides additional insight into the models’ pre-
dictive characteristics. The SE-Inception model not only
demonstrated the highest count of correctly identified true
positives (TP) but also maintained a low FP and FN count,
reflecting its robust discriminative ability. ResNet50, while
still performing relatively well, showed a higher FN and FP
count compared to SE-Inception. Meanwhile, the Random
Forest model performed significantly worse, misclassifying
a substantially larger proportion of cases and showing a no-
tably less favorable balance between TP and FP.

To further assess the clinical applicability of the proposed
SE-Inception model, calibration curves and DCA were con-
ducted.

The calibration curves (Fig. 6) evaluate the agreement be-
tween predicted probabilities and observed outcomes across
the three models—SE-Inception, ResNet50, and Random
Forest. As shown in Fig. 7, the SE-Inception model demon-
strates excellent calibration, closely aligning with the ideal
calibration line (perfect calibration). This indicates that
the predicted probabilities generated by the SE-Inception
model reflect the true risk of VS with high accuracy, fur-
ther confirming its reliability for clinical application.
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The DCA results, depicted in Fig. 7, provide a comprehen-
sive evaluation of the net clinical benefits of the three mod-
els across a range of threshold probabilities. As illustrated
in Fig. 7, the SE-Inception model consistently outperforms
both ResNet50 and Random Forest across all clinically rele-
vant thresholds. The SE-Inception model achieves the high-
est net benefit, indicating its superior ability to guide clini-
cal decision-making and stratify patients at high risk of VS
for early intervention.

These results highlight not only the predictive accuracy of
the SE-Inception model but also its practical utility in clini-
cal settings, aligning with the goal of improving patient out-
comes and enabling proactive management of VS.

In addition to quantitative metrics and model comparisons,
the interpretability of the SE-Inception model was further
assessed using Grad-CAM visualizations, allowing us to
qualitatively compare the model’s decision-making process
against expert clinical judgments. Fig. 8 provides a repre-
sentative Grad-CAM heatmap depicting the specific sub-
regions within the vagina corresponding closely to areas
identified by experienced radiologists as indicative of early
tissue changes predictive of VS.
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Comparison of True Positives, False Positives, True Negatives, and False Negatives
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Fig. 5. Comparison of true positives, false positives, true negatives, and false negatives for each model.

Discussion

The present study demonstrates that the integration of SE
networks with an Inception-based architecture, coupled
with Grad-CAM visualization, can significantly improve
the prediction of post-surgical and radiotherapy-induced
VS in cervical cancer patients. In these patients, the devel-
opment of VS typically follows a combination of surgical
resection and subsequent radiotherapy, both of which can
induce anatomical and functional changes. The ability to
predict VS before initiating radiotherapy after surgery en-
ables more proactive and personalized treatment planning
[19]. Compared to both a conventional machine learning
model (Random Forest) and a commonly employed deep
learning baseline (ResNet50), our proposed SE-Inception
model achieved superior classification metrics, including
higher accuracy, AUC, recall, and F1 score. This per-
formance advantage underscores the capacity of advanced
deep learning architectures to identify subtle pre-treatment
imaging features predictive of VS, enabling better-informed
clinical decision-making.

Furthermore, the suboptimal performance of the Random
Forest model highlights the inherent limitations of tradi-
tional machine learning approaches in medical imaging
tasks. Random Forest relies on a fixed set of handcrafted
radiomic features, which, while useful for dimensionality
reduction, restrict the model’s ability to dynamically adapt
to the high-dimensional and complex nature of imaging
data. Additionally, Random Forest lacks hierarchical fea-
ture extraction capabilities, preventing it from capturing the

multi-scale spatial information critical for distinguishing
subtle imaging biomarkers associated with VS. In contrast,
deep learning models such as SE-Inception and ResNet50
can automatically learn and refine features from raw im-
age data, thereby achieving higher accuracy and generaliz-
ability. This limitation of Random Forest demonstrates the
challenges of applying traditional machine learning tech-
niques to high-dimensional medical imaging datasets with-
out extensive feature engineering.

One of the most critical aspects of our findings is the robust
discriminative power of the SE-Inception model. Specifi-
cally, the model’s recall of 0.96 ensures that nearly all high-
risk patients are correctly identified, minimizing the risk of
untreated VS. In addition to its technical performance, the
clinical implications of VS prediction are particularly crit-
ical for improving patient outcomes. Beyond its physical
effects, VS can significantly impact a patient’s sexual func-
tion and psychological well-being, leading to reduced qual-
ity of life [20]. Early identification of at-risk individuals
through predictive models like SE-Inception allows clini-
cians to initiate interventions such as vaginal dilator ther-
apy or pelvic floor physiotherapy, which have been shown
to mitigate these consequences. Additionally, incorporat-
ing patient education on the potential risks and manage-
ment strategies for VS could further empower cervical can-
cer survivors in their recovery journey.

Furthermore, the integration of Grad-CAM visualizations
allows clinicians to verify the anatomical regions contribut-
ing to the prediction, fostering confidence in the model’s
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Fig. 6. Calibration curves comparing the predictive performance of the SE-Inception, ResNet50, and Random Forest models.
The SE-Inception model demonstrates the highest degree of calibration, closely aligning with the perfect calibration line.

outputs and supporting personalized care strategies. In
surgical contexts, multi-scale feature extraction is vital as
it enables the model to capture both coarse- and fine-
grained details from pre-surgical imaging, reflecting struc-
tural changes due to surgery [21]. The Inception modules
employed in our architecture facilitate this multi-scale anal-
ysis, while the SE blocks re-weight channel-wise features,
emphasizing clinically relevant information and attenuating
redundant features. Such a combination proved instrumen-
tal in uncovering latent patterns associated with the subse-
quent onset of VS. Moreover, advanced computational ap-
proaches, including those leveraging radiomics pipelines,
have demonstrated the ability to decode complex imaging
phenotypes, offering insights into treatment outcomes fol-
lowing surgical intervention and radiotherapy [22]. Simi-
larly, emerging self-configuring deep learning techniques
have shown state-of-the-art performance in various seg-
mentation and classification tasks, demonstrating potential
in predicting surgical outcomes in oncology [23]. In the
realm of radiation oncology, machine learning-driven mod-
els have been applied successfully for early prediction of
therapy outcomes in other cancer types, particularly in rela-
tion to surgical resection and postoperative treatment [24].
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These models help improve the efficiency and precision of
clinical decision-making, especially for high-risk patients
undergoing multi-modal treatment.

In particular, the high recall achieved by the SE-
Inception model indicates its effectiveness in identifying
true positives—patients likely to develop VS post-surgery
and radiotherapy. This is clinically significant, as fail-
ing to identify individuals at high risk before initiating
radiotherapy can lead to long-term functional impairment
and reduced quality of life. Previous research emphasizes
the importance of mitigating late treatment-induced toxic-
ities in cervical cancer survivors, particularly in the con-
text of surgery and radiotherapy [6,7]. By accurately strat-
ifying risk, clinicians can consider preemptive measures,
such as modified radiation planning, tailored dose distri-
bution, or early introduction of vaginal dilator therapy, to
preserve vaginal function post-surgery and enhance patient
outcomes. High-risk patients identified by the SE-Inception
model could benefit from early interventions, such as proac-
tive vaginal dilator therapy, tailored radiotherapy protocols,
and pelvic floor physiotherapy. These strategies have been
shown to mitigate the progression of VS, improve long-
term quality of life, and support personalized treatment ap-
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threshold probabilities. The SE-Inception model consistently provides the highest net benefit, indicating its superior clinical applica-

bility. DCA, decision curve analysis.

proaches. The high recall of the model empowers clinicians
to implement these preemptive strategies at an earlier stage,
thereby enhancing patient outcomes and advancing individ-
ualized care. Integrating the model into clinical workflows
could further provide actionable insights, enabling clini-
cians to identify high-risk patients and design targeted care
plans [25,26]. Additionally, radiotherapy protocols could
be adjusted based on model predictions to minimize expo-
sure to high-risk anatomical areas. Future studies should
aim to prospectively validate the model’s impact on patient
outcomes, such as improved quality of life, reduced inci-
dence of VS, and long-term survivorship benefits. Such
research would further establish the clinical utility of the
model and its potential to transform patient-centered care
in cervical cancer treatment. This omission may affect the
model’s comprehensive predictive capability and its appli-
cability across different treatment protocols. Future studies
should consider integrating these radiotherapy-related vari-
ables to enhance the model’s accuracy and generalizability.

Moreover, the interpretability offered by Grad-CAM visu-
alizations stands out as a key advantage in our work. The
lack of transparency in deep learning models has histor-
ically been a barrier to their clinical adoption, especially
in surgical contexts where anatomical specificity is criti-
cal [27]. With Grad-CAM, we provided spatially resolved

heatmaps indicating the regions of interest that informed
the model’s predictions. The observed alignment between
these highlighted regions and the areas identified by sur-
gical experts as anatomically relevant for VS risk further
supports the model’s clinical utility. This congruence helps
build trust among clinicians, bridging the “black box” gap
that often hinders the integration of Al-driven solutions into
routine clinical practice. Interpretability not only validates
our findings but also may guide future hypothesis-driven
research into the pathophysiology of VS and potential in-
terventions following surgery and radiotherapy.

The improvement in predictive performance observed here
aligns with broader trends in medical imaging research,
where deep learning models have outperformed traditional
algorithms in detecting subtle markers predictive of treat-
ment outcomes. These models are becoming increasingly
capable of detecting pre-symptomatic changes in tissue
caused by both surgical resection and radiation therapy,
providing insights into the post-treatment risks that are crit-
ical for personalized oncology care [28]. By leveraging
large datasets and advanced architectures, deep learning
models can surpass human-level sensitivity and provide
clinicians with more accurate predictions to inform their
treatment choices.
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Mapping.

The calibration of data augmentation strategies underscores
the importance of preserving the anatomical integrity of CT
images in medical imaging applications [29]. By carefully
limiting transformation parameters such as rotation angles
and intensity adjustments, the methodology ensures that
augmented images retain the spatial and anatomical features
critical for recognizing VS risk. This approach not only
enhances the model’s performance on the current dataset
but also enhances its generalizability to external datasets
by maintaining clinical relevance. Future studies incorpo-
rating multi-institutional data may further validate the ef-
fectiveness of these augmentation strategies across diverse
patient populations and imaging protocols.

Compared to prior research in predicting radiotherapy-
induced toxicities, our study offers significant improve-
ments in both predictive performance and result inter-
pretability. Previous models primarily focused on achiev-
ing high accuracy and AUC without providing mechanisms
for understanding the decision-making process [30]. In
contrast, our integration of Grad-CAM visualization not
only maintains superior predictive capabilities but also en-
hances the interpretability of the model by highlighting
the specific anatomical regions influencing its predictions.
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This dual focus on accuracy and interpretability facili-
tates greater trust and usability in clinical settings, enabling
healthcare professionals to make informed decisions based
on both the model’s outcomes and the underlying reasoning.
By aligning model focus with expert-identified risk areas,
our approach bridges the gap between complex deep learn-
ing models and practical clinical application, setting a new
standard for explainable Al in medical image analysis.

In clinical applications, the SE-Inception model demon-
strates significant potential. Predictive results can be pre-
sented through intuitive interfaces, such as heatmaps or risk
scores, enabling clinicians to quickly interpret the findings
and seamlessly integrate them into their workflows. The
computational efficiency of the model ensures timely gen-
eration of results, while integration with electronic medical
records (EMR) could further facilitate real-time predictions
and support clinical practice.

However, certain challenges must be addressed for success-
ful clinical implementation, including data standardization,
applicability to diverse populations, and implementation
costs. Variations in imaging protocols and patient demo-
graphics across institutions may affect the model’s perfor-
mance. Future research should prioritize external valida-
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tion, the use of multi-center datasets, and clinician training
to ensure the robustness of the model and its widespread
adoption in routine medical practice.

Several limitations of the current study should be acknowl-
edged. First, the model has not undergone external valida-
tion using multi-center datasets, which may limit its gener-
alizability to diverse clinical settings with varying imaging
protocols and patient demographics. Future studies should
prioritize the inclusion of data from multiple institutions to
rigorously assess the model’s robustness and applicability
across different populations and clinical environments.

Second, the dataset used in this study, while relatively large
for a single institution, may not fully capture the hetero-
geneity of real-world clinical scenarios. Although data aug-
mentation and cross-validation strategies were employed to
mitigate overfitting risks associated with the limited dataset
size, further improvements could be achieved by increas-
ing the dataset scale and incorporating additional clinical
variables. For instance, radiotherapy-related factors such as
radiation dose, target volume, and fractionation schedules
were not included in the current model, which may have
impacted its ability to comprehensively predict VS risk. In-
tegrating these variables in future studies would likely en-
hance the model’s predictive performance and clinical rel-
evance.

Finally, the reliance on pre-treatment imaging data alone
may not fully account for post-treatment anatomical or
functional changes induced by radiotherapy. The inclusion
of longitudinal imaging data or post-treatment variables
could provide a more comprehensive understanding of VS
risk and improve the model’s utility for clinical decision-
making. Future research should also explore the integration
of advanced imaging modalities and molecular biomarkers
to further enhance the predictive accuracy and clinical ap-
plicability of the model.

Conclusions

In conclusion, integrating the SE-Inception architecture
with Grad-CAM visualization effectively predicts post-
surgical and radiotherapy-induced VS in cervical cancer
patients. The SE-Inception model outperformed both the
Random Forest and ResNet50 baselines, demonstrating
superior sensitivity, specificity, and robustness. Grad-
CAM heatmaps not only highlighted key anatomical re-
gions linked to VS development but also provided valuable
interpretability, aligning with expert clinical assessments.
This combination of predictive accuracy and visual clarity
suggests that such Al systems can support proactive patient
management, reduce long-term morbidity, and improve the
quality of life for patients undergoing cervical cancer treat-
ment, particularly those who have undergone surgery and
subsequent radiotherapy. These tools have the potential
to enhance personalized oncology care and long-term sur-
vivorship management.
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